// -*- C++ -*- // Copyright (C) 2019-2021 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file include/ranges * This is a Standard C++ Library header. * @ingroup concepts */ #ifndef _GLIBCXX_RANGES #define _GLIBCXX_RANGES 1 #if __cplusplus > 201703L #pragma GCC system_header #include #if __cpp_lib_concepts #include #include #include #include #include #include #include /** * @defgroup ranges Ranges * * Components for dealing with ranges of elements. */ namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION namespace ranges { // [range.access] customization point objects // [range.req] range and view concepts // [range.dangling] dangling iterator handling // Defined in // [view.interface] View interface // [range.subrange] Sub-ranges // Defined in // C++20 24.6 [range.factories] Range factories /// A view that contains no elements. template requires is_object_v<_Tp> class empty_view : public view_interface> { public: static constexpr _Tp* begin() noexcept { return nullptr; } static constexpr _Tp* end() noexcept { return nullptr; } static constexpr _Tp* data() noexcept { return nullptr; } static constexpr size_t size() noexcept { return 0; } static constexpr bool empty() noexcept { return true; } }; template inline constexpr bool enable_borrowed_range> = true; namespace __detail { template concept __boxable = copy_constructible<_Tp> && is_object_v<_Tp>; template<__boxable _Tp> struct __box : std::optional<_Tp> { using std::optional<_Tp>::optional; constexpr __box() noexcept(is_nothrow_default_constructible_v<_Tp>) requires default_initializable<_Tp> : std::optional<_Tp>{std::in_place} { } __box(const __box&) = default; __box(__box&&) = default; using std::optional<_Tp>::operator=; // _GLIBCXX_RESOLVE_LIB_DEFECTS // 3477. Simplify constraints for semiregular-box __box& operator=(const __box& __that) noexcept(is_nothrow_copy_constructible_v<_Tp>) requires (!copyable<_Tp>) { if ((bool)__that) this->emplace(*__that); else this->reset(); return *this; } __box& operator=(__box&& __that) noexcept(is_nothrow_move_constructible_v<_Tp>) requires (!movable<_Tp>) { if ((bool)__that) this->emplace(std::move(*__that)); else this->reset(); return *this; } }; // For types which are already semiregular, this specialization of the // semiregular wrapper stores the object directly without going through // std::optional. It provides just the subset of the primary template's // API that we currently use. template<__boxable _Tp> requires semiregular<_Tp> struct __box<_Tp> { private: [[no_unique_address]] _Tp _M_value = _Tp(); public: __box() = default; constexpr explicit __box(const _Tp& __t) noexcept(is_nothrow_copy_constructible_v<_Tp>) : _M_value{__t} { } constexpr explicit __box(_Tp&& __t) noexcept(is_nothrow_move_constructible_v<_Tp>) : _M_value{std::move(__t)} { } template requires constructible_from<_Tp, _Args...> constexpr explicit __box(in_place_t, _Args&&... __args) noexcept(is_nothrow_constructible_v<_Tp, _Args...>) : _M_value(std::forward<_Args>(__args)...) { } constexpr bool has_value() const noexcept { return true; }; constexpr _Tp& operator*() noexcept { return _M_value; } constexpr const _Tp& operator*() const noexcept { return _M_value; } constexpr _Tp* operator->() noexcept { return std::__addressof(_M_value); } constexpr const _Tp* operator->() const noexcept { return std::__addressof(_M_value); } }; } // namespace __detail /// A view that contains exactly one element. template requires is_object_v<_Tp> class single_view : public view_interface> { public: single_view() = default; constexpr explicit single_view(const _Tp& __t) : _M_value(__t) { } constexpr explicit single_view(_Tp&& __t) : _M_value(std::move(__t)) { } // _GLIBCXX_RESOLVE_LIB_DEFECTS // 3428. single_view's in place constructor should be explicit template requires constructible_from<_Tp, _Args...> constexpr explicit single_view(in_place_t, _Args&&... __args) : _M_value{in_place, std::forward<_Args>(__args)...} { } constexpr _Tp* begin() noexcept { return data(); } constexpr const _Tp* begin() const noexcept { return data(); } constexpr _Tp* end() noexcept { return data() + 1; } constexpr const _Tp* end() const noexcept { return data() + 1; } static constexpr size_t size() noexcept { return 1; } constexpr _Tp* data() noexcept { return _M_value.operator->(); } constexpr const _Tp* data() const noexcept { return _M_value.operator->(); } private: [[no_unique_address]] __detail::__box<_Tp> _M_value; }; template single_view(_Tp) -> single_view<_Tp>; namespace __detail { template constexpr auto __to_signed_like(_Wp __w) noexcept { if constexpr (!integral<_Wp>) return iter_difference_t<_Wp>(); else if constexpr (sizeof(iter_difference_t<_Wp>) > sizeof(_Wp)) return iter_difference_t<_Wp>(__w); else if constexpr (sizeof(ptrdiff_t) > sizeof(_Wp)) return ptrdiff_t(__w); else if constexpr (sizeof(long long) > sizeof(_Wp)) return (long long)(__w); #ifdef __SIZEOF_INT128__ else if constexpr (__SIZEOF_INT128__ > sizeof(_Wp)) return __int128(__w); #endif else return __max_diff_type(__w); } template using __iota_diff_t = decltype(__to_signed_like(std::declval<_Wp>())); template concept __decrementable = incrementable<_It> && requires(_It __i) { { --__i } -> same_as<_It&>; { __i-- } -> same_as<_It>; }; template concept __advanceable = __decrementable<_It> && totally_ordered<_It> && requires( _It __i, const _It __j, const __iota_diff_t<_It> __n) { { __i += __n } -> same_as<_It&>; { __i -= __n } -> same_as<_It&>; _It(__j + __n); _It(__n + __j); _It(__j - __n); { __j - __j } -> convertible_to<__iota_diff_t<_It>>; }; template struct __iota_view_iter_cat { }; template struct __iota_view_iter_cat<_Winc> { using iterator_category = input_iterator_tag; }; } // namespace __detail template requires std::__detail::__weakly_eq_cmp_with<_Winc, _Bound> && semiregular<_Winc> class iota_view : public view_interface> { private: struct _Sentinel; struct _Iterator : __detail::__iota_view_iter_cat<_Winc> { private: static auto _S_iter_concept() { using namespace __detail; if constexpr (__advanceable<_Winc>) return random_access_iterator_tag{}; else if constexpr (__decrementable<_Winc>) return bidirectional_iterator_tag{}; else if constexpr (incrementable<_Winc>) return forward_iterator_tag{}; else return input_iterator_tag{}; } public: using iterator_concept = decltype(_S_iter_concept()); // iterator_category defined in __iota_view_iter_cat using value_type = _Winc; using difference_type = __detail::__iota_diff_t<_Winc>; _Iterator() = default; constexpr explicit _Iterator(_Winc __value) : _M_value(__value) { } constexpr _Winc operator*() const noexcept(is_nothrow_copy_constructible_v<_Winc>) { return _M_value; } constexpr _Iterator& operator++() { ++_M_value; return *this; } constexpr void operator++(int) { ++*this; } constexpr _Iterator operator++(int) requires incrementable<_Winc> { auto __tmp = *this; ++*this; return __tmp; } constexpr _Iterator& operator--() requires __detail::__decrementable<_Winc> { --_M_value; return *this; } constexpr _Iterator operator--(int) requires __detail::__decrementable<_Winc> { auto __tmp = *this; --*this; return __tmp; } constexpr _Iterator& operator+=(difference_type __n) requires __detail::__advanceable<_Winc> { using __detail::__is_integer_like; using __detail::__is_signed_integer_like; if constexpr (__is_integer_like<_Winc> && !__is_signed_integer_like<_Winc>) { if (__n >= difference_type(0)) _M_value += static_cast<_Winc>(__n); else _M_value -= static_cast<_Winc>(-__n); } else _M_value += __n; return *this; } constexpr _Iterator& operator-=(difference_type __n) requires __detail::__advanceable<_Winc> { using __detail::__is_integer_like; using __detail::__is_signed_integer_like; if constexpr (__is_integer_like<_Winc> && !__is_signed_integer_like<_Winc>) { if (__n >= difference_type(0)) _M_value -= static_cast<_Winc>(__n); else _M_value += static_cast<_Winc>(-__n); } else _M_value -= __n; return *this; } constexpr _Winc operator[](difference_type __n) const requires __detail::__advanceable<_Winc> { return _Winc(_M_value + __n); } friend constexpr bool operator==(const _Iterator& __x, const _Iterator& __y) requires equality_comparable<_Winc> { return __x._M_value == __y._M_value; } friend constexpr bool operator<(const _Iterator& __x, const _Iterator& __y) requires totally_ordered<_Winc> { return __x._M_value < __y._M_value; } friend constexpr bool operator>(const _Iterator& __x, const _Iterator& __y) requires totally_ordered<_Winc> { return __y < __x; } friend constexpr bool operator<=(const _Iterator& __x, const _Iterator& __y) requires totally_ordered<_Winc> { return !(__y < __x); } friend constexpr bool operator>=(const _Iterator& __x, const _Iterator& __y) requires totally_ordered<_Winc> { return !(__x < __y); } #ifdef __cpp_lib_three_way_comparison friend constexpr auto operator<=>(const _Iterator& __x, const _Iterator& __y) requires totally_ordered<_Winc> && three_way_comparable<_Winc> { return __x._M_value <=> __y._M_value; } #endif friend constexpr _Iterator operator+(_Iterator __i, difference_type __n) requires __detail::__advanceable<_Winc> { return __i += __n; } friend constexpr _Iterator operator+(difference_type __n, _Iterator __i) requires __detail::__advanceable<_Winc> { return __i += __n; } friend constexpr _Iterator operator-(_Iterator __i, difference_type __n) requires __detail::__advanceable<_Winc> { return __i -= __n; } friend constexpr difference_type operator-(const _Iterator& __x, const _Iterator& __y) requires __detail::__advanceable<_Winc> { using __detail::__is_integer_like; using __detail::__is_signed_integer_like; using _Dt = difference_type; if constexpr (__is_integer_like<_Winc>) { if constexpr (__is_signed_integer_like<_Winc>) return _Dt(_Dt(__x._M_value) - _Dt(__y._M_value)); else return (__y._M_value > __x._M_value) ? _Dt(-_Dt(__y._M_value - __x._M_value)) : _Dt(__x._M_value - __y._M_value); } else return __x._M_value - __y._M_value; } private: _Winc _M_value = _Winc(); friend _Sentinel; }; struct _Sentinel { private: constexpr bool _M_equal(const _Iterator& __x) const { return __x._M_value == _M_bound; } constexpr auto _M_distance_from(const _Iterator& __x) const { return _M_bound - __x._M_value; } _Bound _M_bound = _Bound(); public: _Sentinel() = default; constexpr explicit _Sentinel(_Bound __bound) : _M_bound(__bound) { } friend constexpr bool operator==(const _Iterator& __x, const _Sentinel& __y) { return __y._M_equal(__x); } friend constexpr iter_difference_t<_Winc> operator-(const _Iterator& __x, const _Sentinel& __y) requires sized_sentinel_for<_Bound, _Winc> { return -__y._M_distance_from(__x); } friend constexpr iter_difference_t<_Winc> operator-(const _Sentinel& __x, const _Iterator& __y) requires sized_sentinel_for<_Bound, _Winc> { return __x._M_distance_from(__y); } }; _Winc _M_value = _Winc(); [[no_unique_address]] _Bound _M_bound = _Bound(); public: iota_view() = default; constexpr explicit iota_view(_Winc __value) : _M_value(__value) { } constexpr iota_view(type_identity_t<_Winc> __value, type_identity_t<_Bound> __bound) : _M_value(__value), _M_bound(__bound) { if constexpr (totally_ordered_with<_Winc, _Bound>) __glibcxx_assert( bool(__value <= __bound) ); } constexpr _Iterator begin() const { return _Iterator{_M_value}; } constexpr auto end() const { if constexpr (same_as<_Bound, unreachable_sentinel_t>) return unreachable_sentinel; else return _Sentinel{_M_bound}; } constexpr _Iterator end() const requires same_as<_Winc, _Bound> { return _Iterator{_M_bound}; } constexpr auto size() const requires (same_as<_Winc, _Bound> && __detail::__advanceable<_Winc>) || (integral<_Winc> && integral<_Bound>) || sized_sentinel_for<_Bound, _Winc> { using __detail::__is_integer_like; using __detail::__to_unsigned_like; if constexpr (integral<_Winc> && integral<_Bound>) { using _Up = make_unsigned_t; return _Up(_M_bound) - _Up(_M_value); } else if constexpr (__is_integer_like<_Winc>) return __to_unsigned_like(_M_bound) - __to_unsigned_like(_M_value); else return __to_unsigned_like(_M_bound - _M_value); } }; template requires (!__detail::__is_integer_like<_Winc> || !__detail::__is_integer_like<_Bound> || (__detail::__is_signed_integer_like<_Winc> == __detail::__is_signed_integer_like<_Bound>)) iota_view(_Winc, _Bound) -> iota_view<_Winc, _Bound>; template inline constexpr bool enable_borrowed_range> = true; namespace views { template inline constexpr empty_view<_Tp> empty{}; struct _Single { template constexpr auto operator()(_Tp&& __e) const { return single_view>(std::forward<_Tp>(__e)); } }; inline constexpr _Single single{}; struct _Iota { template constexpr auto operator()(_Tp&& __e) const { return iota_view(std::forward<_Tp>(__e)); } template constexpr auto operator()(_Tp&& __e, _Up&& __f) const { return iota_view(std::forward<_Tp>(__e), std::forward<_Up>(__f)); } }; inline constexpr _Iota iota{}; } // namespace views namespace __detail { template concept __stream_extractable = requires(basic_istream<_CharT, _Traits>& is, _Val& t) { is >> t; }; } // namespace __detail template requires default_initializable<_Val> && __detail::__stream_extractable<_Val, _CharT, _Traits> class basic_istream_view : public view_interface> { public: basic_istream_view() = default; constexpr explicit basic_istream_view(basic_istream<_CharT, _Traits>& __stream) : _M_stream(std::__addressof(__stream)) { } constexpr auto begin() { if (_M_stream != nullptr) *_M_stream >> _M_object; return _Iterator{this}; } constexpr default_sentinel_t end() const noexcept { return default_sentinel; } private: basic_istream<_CharT, _Traits>* _M_stream = nullptr; _Val _M_object = _Val(); struct _Iterator { public: using iterator_concept = input_iterator_tag; using difference_type = ptrdiff_t; using value_type = _Val; _Iterator() = default; constexpr explicit _Iterator(basic_istream_view* __parent) noexcept : _M_parent(__parent) { } _Iterator(const _Iterator&) = delete; _Iterator(_Iterator&&) = default; _Iterator& operator=(const _Iterator&) = delete; _Iterator& operator=(_Iterator&&) = default; _Iterator& operator++() { __glibcxx_assert(_M_parent->_M_stream != nullptr); *_M_parent->_M_stream >> _M_parent->_M_object; return *this; } void operator++(int) { ++*this; } _Val& operator*() const { __glibcxx_assert(_M_parent->_M_stream != nullptr); return _M_parent->_M_object; } friend bool operator==(const _Iterator& __x, default_sentinel_t) { return __x._M_at_end(); } private: basic_istream_view* _M_parent = nullptr; bool _M_at_end() const { return _M_parent == nullptr || !*_M_parent->_M_stream; } }; friend _Iterator; }; template basic_istream_view<_Val, _CharT, _Traits> istream_view(basic_istream<_CharT, _Traits>& __s) { return basic_istream_view<_Val, _CharT, _Traits>{__s}; } // C++20 24.7 [range.adaptors] Range adaptors namespace __detail { struct _Empty { }; // Alias for a type that is conditionally present // (and is an empty type otherwise). // Data members using this alias should use [[no_unique_address]] so that // they take no space when not needed. template using __maybe_present_t = conditional_t<_Present, _Tp, _Empty>; // Alias for a type that is conditionally const. template using __maybe_const_t = conditional_t<_Const, const _Tp, _Tp>; } // namespace __detail namespace views::__adaptor { // True if the range adaptor _Adaptor can be applied with _Args. template concept __adaptor_invocable = requires { std::declval<_Adaptor>()(declval<_Args>()...); }; // True if the range adaptor non-closure _Adaptor can be partially applied // with _Args. template concept __adaptor_partial_app_viable = (_Adaptor::_S_arity > 1) && (sizeof...(_Args) == _Adaptor::_S_arity - 1) && (constructible_from, _Args> && ...); template struct _Partial; template struct _Pipe; // The base class of every range adaptor closure. // // The derived class should define the optional static data member // _S_has_simple_call_op to true if the behavior of this adaptor is // independent of the constness/value category of the adaptor object. struct _RangeAdaptorClosure { // range | adaptor is equivalent to adaptor(range). template requires derived_from, _RangeAdaptorClosure> && __adaptor_invocable<_Self, _Range> friend constexpr auto operator|(_Range&& __r, _Self&& __self) { return std::forward<_Self>(__self)(std::forward<_Range>(__r)); } // Compose the adaptors __lhs and __rhs into a pipeline, returning // another range adaptor closure object. template requires derived_from<_Lhs, _RangeAdaptorClosure> && derived_from<_Rhs, _RangeAdaptorClosure> friend constexpr auto operator|(_Lhs __lhs, _Rhs __rhs) { return _Pipe<_Lhs, _Rhs>{std::move(__lhs), std::move(__rhs)}; } }; // The base class of every range adaptor non-closure. // // The static data member _Derived::_S_arity must contain the total number of // arguments that the adaptor takes, and the class _Derived must introduce // _RangeAdaptor::operator() into the class scope via a using-declaration. // // The optional static data member _Derived::_S_has_simple_extra_args should // be defined to true if the behavior of this adaptor is independent of the // constness/value category of the extra arguments. This data member could // also be defined as a variable template parameterized by the types of the // extra arguments. template struct _RangeAdaptor { // Partially apply the arguments __args to the range adaptor _Derived, // returning a range adaptor closure object. template requires __adaptor_partial_app_viable<_Derived, _Args...> constexpr auto operator()(_Args&&... __args) const { return _Partial<_Derived, decay_t<_Args>...>{std::forward<_Args>(__args)...}; } }; // True if the range adaptor closure _Adaptor has a simple operator(), i.e. // one that's not overloaded according to constness or value category of the // _Adaptor object. template concept __closure_has_simple_call_op = _Adaptor::_S_has_simple_call_op; // True if the behavior of the range adaptor non-closure _Adaptor is // independent of the value category of its extra arguments _Args. template concept __adaptor_has_simple_extra_args = _Adaptor::_S_has_simple_extra_args || _Adaptor::template _S_has_simple_extra_args<_Args...>; // A range adaptor closure that represents partial application of // the range adaptor _Adaptor with arguments _Args. template struct _Partial : _RangeAdaptorClosure { tuple<_Args...> _M_args; constexpr _Partial(_Args... __args) : _M_args(std::move(__args)...) { } // Invoke _Adaptor with arguments __r, _M_args... according to the // value category of this _Partial object. template requires __adaptor_invocable<_Adaptor, _Range, const _Args&...> constexpr auto operator()(_Range&& __r) const & { auto __forwarder = [&__r] (const auto&... __args) { return _Adaptor{}(std::forward<_Range>(__r), __args...); }; return std::apply(__forwarder, _M_args); } template requires __adaptor_invocable<_Adaptor, _Range, _Args...> constexpr auto operator()(_Range&& __r) && { auto __forwarder = [&__r] (auto&... __args) { return _Adaptor{}(std::forward<_Range>(__r), std::move(__args)...); }; return std::apply(__forwarder, _M_args); } template constexpr auto operator()(_Range&& __r) const && = delete; }; // A lightweight specialization of the above primary template for // the common case where _Adaptor accepts a single extra argument. template struct _Partial<_Adaptor, _Arg> : _RangeAdaptorClosure { _Arg _M_arg; constexpr _Partial(_Arg __arg) : _M_arg(std::move(__arg)) { } template requires __adaptor_invocable<_Adaptor, _Range, const _Arg&> constexpr auto operator()(_Range&& __r) const & { return _Adaptor{}(std::forward<_Range>(__r), _M_arg); } template requires __adaptor_invocable<_Adaptor, _Range, _Arg> constexpr auto operator()(_Range&& __r) && { return _Adaptor{}(std::forward<_Range>(__r), std::move(_M_arg)); } template constexpr auto operator()(_Range&& __r) const && = delete; }; // Partial specialization of the primary template for the case where the extra // arguments of the adaptor can always be safely and efficiently forwarded by // const reference. This lets us get away with a single operator() overload, // which makes overload resolution failure diagnostics more concise. template requires __adaptor_has_simple_extra_args<_Adaptor, _Args...> && (is_trivially_copyable_v<_Args> && ...) struct _Partial<_Adaptor, _Args...> : _RangeAdaptorClosure { tuple<_Args...> _M_args; constexpr _Partial(_Args... __args) : _M_args(std::move(__args)...) { } // Invoke _Adaptor with arguments __r, const _M_args&... regardless // of the value category of this _Partial object. template requires __adaptor_invocable<_Adaptor, _Range, const _Args&...> constexpr auto operator()(_Range&& __r) const { auto __forwarder = [&__r] (const auto&... __args) { return _Adaptor{}(std::forward<_Range>(__r), __args...); }; return std::apply(__forwarder, _M_args); } static constexpr bool _S_has_simple_call_op = true; }; // A lightweight specialization of the above template for the common case // where _Adaptor accepts a single extra argument. template requires __adaptor_has_simple_extra_args<_Adaptor, _Arg> && is_trivially_copyable_v<_Arg> struct _Partial<_Adaptor, _Arg> : _RangeAdaptorClosure { _Arg _M_arg; constexpr _Partial(_Arg __arg) : _M_arg(std::move(__arg)) { } template requires __adaptor_invocable<_Adaptor, _Range, const _Arg&> constexpr auto operator()(_Range&& __r) const { return _Adaptor{}(std::forward<_Range>(__r), _M_arg); } static constexpr bool _S_has_simple_call_op = true; }; template concept __pipe_invocable = requires { std::declval<_Rhs>()(std::declval<_Lhs>()(std::declval<_Range>())); }; // A range adaptor closure that represents composition of the range // adaptor closures _Lhs and _Rhs. template struct _Pipe : _RangeAdaptorClosure { [[no_unique_address]] _Lhs _M_lhs; [[no_unique_address]] _Rhs _M_rhs; constexpr _Pipe(_Lhs __lhs, _Rhs __rhs) : _M_lhs(std::move(__lhs)), _M_rhs(std::move(__rhs)) { } // Invoke _M_rhs(_M_lhs(__r)) according to the value category of this // range adaptor closure object. template requires __pipe_invocable constexpr auto operator()(_Range&& __r) const & { return _M_rhs(_M_lhs(std::forward<_Range>(__r))); } template requires __pipe_invocable<_Lhs, _Rhs, _Range> constexpr auto operator()(_Range&& __r) && { return std::move(_M_rhs)(std::move(_M_lhs)(std::forward<_Range>(__r))); } template constexpr auto operator()(_Range&& __r) const && = delete; }; // A partial specialization of the above primary template for the case where // both adaptor operands have a simple operator(). This in turn lets us // implement composition using a single simple operator(), which makes // overload resolution failure diagnostics more concise. template requires __closure_has_simple_call_op<_Lhs> && __closure_has_simple_call_op<_Rhs> struct _Pipe<_Lhs, _Rhs> : _RangeAdaptorClosure { [[no_unique_address]] _Lhs _M_lhs; [[no_unique_address]] _Rhs _M_rhs; constexpr _Pipe(_Lhs __lhs, _Rhs __rhs) : _M_lhs(std::move(__lhs)), _M_rhs(std::move(__rhs)) { } template requires __pipe_invocable constexpr auto operator()(_Range&& __r) const { return _M_rhs(_M_lhs(std::forward<_Range>(__r))); } static constexpr bool _S_has_simple_call_op = true; }; } // namespace views::__adaptor template requires is_object_v<_Range> class ref_view : public view_interface> { private: _Range* _M_r = nullptr; static void _S_fun(_Range&); // not defined static void _S_fun(_Range&&) = delete; public: constexpr ref_view() noexcept = default; template<__detail::__not_same_as _Tp> requires convertible_to<_Tp, _Range&> && requires { _S_fun(declval<_Tp>()); } constexpr ref_view(_Tp&& __t) : _M_r(std::__addressof(static_cast<_Range&>(std::forward<_Tp>(__t)))) { } constexpr _Range& base() const { return *_M_r; } constexpr iterator_t<_Range> begin() const { return ranges::begin(*_M_r); } constexpr sentinel_t<_Range> end() const { return ranges::end(*_M_r); } constexpr bool empty() const requires requires { ranges::empty(*_M_r); } { return ranges::empty(*_M_r); } constexpr auto size() const requires sized_range<_Range> { return ranges::size(*_M_r); } constexpr auto data() const requires contiguous_range<_Range> { return ranges::data(*_M_r); } }; template ref_view(_Range&) -> ref_view<_Range>; template inline constexpr bool enable_borrowed_range> = true; namespace views { namespace __detail { template concept __can_ref_view = requires { ref_view{std::declval<_Range>()}; }; template concept __can_subrange = requires { subrange{std::declval<_Range>()}; }; } // namespace __detail struct _All : __adaptor::_RangeAdaptorClosure { template requires view> || __detail::__can_ref_view<_Range> || __detail::__can_subrange<_Range> constexpr auto operator()(_Range&& __r) const { if constexpr (view>) return std::forward<_Range>(__r); else if constexpr (__detail::__can_ref_view<_Range>) return ref_view{std::forward<_Range>(__r)}; else return subrange{std::forward<_Range>(__r)}; } static constexpr bool _S_has_simple_call_op = true; }; inline constexpr _All all; template using all_t = decltype(all(std::declval<_Range>())); } // namespace views // The following simple algos are transcribed from ranges_algo.h to avoid // having to include that entire header. namespace __detail { template constexpr _Iter find(_Iter __first, _Sent __last, const _Tp& __value) { while (__first != __last && !(bool)(*__first == __value)) ++__first; return __first; } template constexpr _Iter find_if(_Iter __first, _Sent __last, _Pred __pred) { while (__first != __last && !(bool)std::__invoke(__pred, *__first)) ++__first; return __first; } template constexpr _Iter find_if_not(_Iter __first, _Sent __last, _Pred __pred) { while (__first != __last && (bool)std::__invoke(__pred, *__first)) ++__first; return __first; } template constexpr pair<_Iter1, _Iter2> mismatch(_Iter1 __first1, _Sent1 __last1, _Iter2 __first2, _Sent2 __last2) { while (__first1 != __last1 && __first2 != __last2 && (bool)ranges::equal_to{}(*__first1, *__first2)) { ++__first1; ++__first2; } return { std::move(__first1), std::move(__first2) }; } } // namespace __detail namespace __detail { template struct __non_propagating_cache { // When _Tp is not an object type (e.g. is a reference type), we make // __non_propagating_cache<_Tp> empty rather than ill-formed so that // users can easily conditionally declare data members with this type // (such as join_view::_M_inner). }; template requires is_object_v<_Tp> struct __non_propagating_cache<_Tp> : protected _Optional_base<_Tp> { __non_propagating_cache() = default; constexpr __non_propagating_cache(const __non_propagating_cache&) noexcept { } constexpr __non_propagating_cache(__non_propagating_cache&& __other) noexcept { __other._M_reset(); } constexpr __non_propagating_cache& operator=(const __non_propagating_cache& __other) noexcept { if (std::__addressof(__other) != this) this->_M_reset(); return *this; } constexpr __non_propagating_cache& operator=(__non_propagating_cache&& __other) noexcept { this->_M_reset(); __other._M_reset(); return *this; } constexpr _Tp& operator*() noexcept { return this->_M_get(); } constexpr const _Tp& operator*() const noexcept { return this->_M_get(); } template _Tp& _M_emplace_deref(const _Iter& __i) { this->_M_reset(); // Using _Optional_base::_M_construct to initialize from '*__i' // would incur an extra move due to the indirection, so we instead // use placement new directly. ::new ((void *) std::__addressof(this->_M_payload._M_payload)) _Tp(*__i); this->_M_payload._M_engaged = true; return this->_M_get(); } }; template struct _CachedPosition { constexpr bool _M_has_value() const { return false; } constexpr iterator_t<_Range> _M_get(const _Range&) const { __glibcxx_assert(false); return {}; } constexpr void _M_set(const _Range&, const iterator_t<_Range>&) const { } }; template struct _CachedPosition<_Range> : protected __non_propagating_cache> { constexpr bool _M_has_value() const { return this->_M_is_engaged(); } constexpr iterator_t<_Range> _M_get(const _Range&) const { __glibcxx_assert(_M_has_value()); return **this; } constexpr void _M_set(const _Range&, const iterator_t<_Range>& __it) { __glibcxx_assert(!_M_has_value()); std::construct_at(std::__addressof(this->_M_payload._M_payload), in_place, __it); this->_M_payload._M_engaged = true; } }; template requires (sizeof(range_difference_t<_Range>) <= sizeof(iterator_t<_Range>)) struct _CachedPosition<_Range> { private: range_difference_t<_Range> _M_offset = -1; public: _CachedPosition() = default; constexpr _CachedPosition(const _CachedPosition&) = default; constexpr _CachedPosition(_CachedPosition&& __other) noexcept { *this = std::move(__other); } constexpr _CachedPosition& operator=(const _CachedPosition&) = default; constexpr _CachedPosition& operator=(_CachedPosition&& __other) noexcept { // Propagate the cached offset, but invalidate the source. _M_offset = __other._M_offset; __other._M_offset = -1; return *this; } constexpr bool _M_has_value() const { return _M_offset >= 0; } constexpr iterator_t<_Range> _M_get(_Range& __r) const { __glibcxx_assert(_M_has_value()); return ranges::begin(__r) + _M_offset; } constexpr void _M_set(_Range& __r, const iterator_t<_Range>& __it) { __glibcxx_assert(!_M_has_value()); _M_offset = __it - ranges::begin(__r); } }; } // namespace __detail namespace __detail { template struct __filter_view_iter_cat { }; template struct __filter_view_iter_cat<_Base> { private: static auto _S_iter_cat() { using _Cat = typename iterator_traits>::iterator_category; if constexpr (derived_from<_Cat, bidirectional_iterator_tag>) return bidirectional_iterator_tag{}; else if constexpr (derived_from<_Cat, forward_iterator_tag>) return forward_iterator_tag{}; else return _Cat{}; } public: using iterator_category = decltype(_S_iter_cat()); }; } // namespace __detail template> _Pred> requires view<_Vp> && is_object_v<_Pred> class filter_view : public view_interface> { private: struct _Sentinel; struct _Iterator : __detail::__filter_view_iter_cat<_Vp> { private: static constexpr auto _S_iter_concept() { if constexpr (bidirectional_range<_Vp>) return bidirectional_iterator_tag{}; else if constexpr (forward_range<_Vp>) return forward_iterator_tag{}; else return input_iterator_tag{}; } friend filter_view; using _Vp_iter = iterator_t<_Vp>; _Vp_iter _M_current = _Vp_iter(); filter_view* _M_parent = nullptr; public: using iterator_concept = decltype(_S_iter_concept()); // iterator_category defined in __filter_view_iter_cat using value_type = range_value_t<_Vp>; using difference_type = range_difference_t<_Vp>; _Iterator() = default; constexpr _Iterator(filter_view* __parent, _Vp_iter __current) : _M_current(std::move(__current)), _M_parent(__parent) { } constexpr const _Vp_iter& base() const & noexcept { return _M_current; } constexpr _Vp_iter base() && { return std::move(_M_current); } constexpr range_reference_t<_Vp> operator*() const { return *_M_current; } constexpr _Vp_iter operator->() const requires __detail::__has_arrow<_Vp_iter> && copyable<_Vp_iter> { return _M_current; } constexpr _Iterator& operator++() { _M_current = __detail::find_if(std::move(++_M_current), ranges::end(_M_parent->_M_base), std::ref(*_M_parent->_M_pred)); return *this; } constexpr void operator++(int) { ++*this; } constexpr _Iterator operator++(int) requires forward_range<_Vp> { auto __tmp = *this; ++*this; return __tmp; } constexpr _Iterator& operator--() requires bidirectional_range<_Vp> { do --_M_current; while (!std::__invoke(*_M_parent->_M_pred, *_M_current)); return *this; } constexpr _Iterator operator--(int) requires bidirectional_range<_Vp> { auto __tmp = *this; --*this; return __tmp; } friend constexpr bool operator==(const _Iterator& __x, const _Iterator& __y) requires equality_comparable<_Vp_iter> { return __x._M_current == __y._M_current; } friend constexpr range_rvalue_reference_t<_Vp> iter_move(const _Iterator& __i) noexcept(noexcept(ranges::iter_move(__i._M_current))) { return ranges::iter_move(__i._M_current); } friend constexpr void iter_swap(const _Iterator& __x, const _Iterator& __y) noexcept(noexcept(ranges::iter_swap(__x._M_current, __y._M_current))) requires indirectly_swappable<_Vp_iter> { ranges::iter_swap(__x._M_current, __y._M_current); } }; struct _Sentinel { private: sentinel_t<_Vp> _M_end = sentinel_t<_Vp>(); constexpr bool __equal(const _Iterator& __i) const { return __i._M_current == _M_end; } public: _Sentinel() = default; constexpr explicit _Sentinel(filter_view* __parent) : _M_end(ranges::end(__parent->_M_base)) { } constexpr sentinel_t<_Vp> base() const { return _M_end; } friend constexpr bool operator==(const _Iterator& __x, const _Sentinel& __y) { return __y.__equal(__x); } }; [[no_unique_address]] __detail::__box<_Pred> _M_pred; [[no_unique_address]] __detail::_CachedPosition<_Vp> _M_cached_begin; _Vp _M_base = _Vp(); public: filter_view() = default; constexpr filter_view(_Vp __base, _Pred __pred) : _M_pred(std::move(__pred)), _M_base(std::move(__base)) { } constexpr _Vp base() const& requires copy_constructible<_Vp> { return _M_base; } constexpr _Vp base() && { return std::move(_M_base); } constexpr const _Pred& pred() const { return *_M_pred; } constexpr _Iterator begin() { if (_M_cached_begin._M_has_value()) return {this, _M_cached_begin._M_get(_M_base)}; __glibcxx_assert(_M_pred.has_value()); auto __it = __detail::find_if(ranges::begin(_M_base), ranges::end(_M_base), std::ref(*_M_pred)); _M_cached_begin._M_set(_M_base, __it); return {this, std::move(__it)}; } constexpr auto end() { if constexpr (common_range<_Vp>) return _Iterator{this, ranges::end(_M_base)}; else return _Sentinel{this}; } }; template filter_view(_Range&&, _Pred) -> filter_view, _Pred>; namespace views { namespace __detail { template concept __can_filter_view = requires { filter_view(std::declval<_Range>(), std::declval<_Pred>()); }; } // namespace __detail struct _Filter : __adaptor::_RangeAdaptor<_Filter> { template requires __detail::__can_filter_view<_Range, _Pred> constexpr auto operator()(_Range&& __r, _Pred&& __p) const { return filter_view(std::forward<_Range>(__r), std::forward<_Pred>(__p)); } using _RangeAdaptor<_Filter>::operator(); static constexpr int _S_arity = 2; static constexpr bool _S_has_simple_extra_args = true; }; inline constexpr _Filter filter; } // namespace views template requires view<_Vp> && is_object_v<_Fp> && regular_invocable<_Fp&, range_reference_t<_Vp>> && std::__detail::__can_reference>> class transform_view : public view_interface> { private: template using _Base = __detail::__maybe_const_t<_Const, _Vp>; template struct __iter_cat { }; template requires forward_range<_Base<_Const>> struct __iter_cat<_Const> { private: static auto _S_iter_cat() { using _Base = transform_view::_Base<_Const>; using _Res = invoke_result_t<_Fp&, range_reference_t<_Base>>; if constexpr (is_lvalue_reference_v<_Res>) { using _Cat = typename iterator_traits>::iterator_category; if constexpr (derived_from<_Cat, contiguous_iterator_tag>) return random_access_iterator_tag{}; else return _Cat{}; } else return input_iterator_tag{}; } public: using iterator_category = decltype(_S_iter_cat()); }; template struct _Sentinel; template struct _Iterator : __iter_cat<_Const> { private: using _Parent = __detail::__maybe_const_t<_Const, transform_view>; using _Base = transform_view::_Base<_Const>; static auto _S_iter_concept() { if constexpr (random_access_range<_Vp>) return random_access_iterator_tag{}; else if constexpr (bidirectional_range<_Vp>) return bidirectional_iterator_tag{}; else if constexpr (forward_range<_Vp>) return forward_iterator_tag{}; else return input_iterator_tag{}; } using _Base_iter = iterator_t<_Base>; _Base_iter _M_current = _Base_iter(); _Parent* _M_parent = nullptr; public: using iterator_concept = decltype(_S_iter_concept()); // iterator_category defined in __transform_view_iter_cat using value_type = remove_cvref_t>>; using difference_type = range_difference_t<_Base>; _Iterator() = default; constexpr _Iterator(_Parent* __parent, _Base_iter __current) : _M_current(std::move(__current)), _M_parent(__parent) { } constexpr _Iterator(_Iterator __i) requires _Const && convertible_to, _Base_iter> : _M_current(std::move(__i._M_current)), _M_parent(__i._M_parent) { } constexpr const _Base_iter& base() const & noexcept { return _M_current; } constexpr _Base_iter base() && { return std::move(_M_current); } constexpr decltype(auto) operator*() const noexcept(noexcept(std::__invoke(*_M_parent->_M_fun, *_M_current))) { return std::__invoke(*_M_parent->_M_fun, *_M_current); } constexpr _Iterator& operator++() { ++_M_current; return *this; } constexpr void operator++(int) { ++_M_current; } constexpr _Iterator operator++(int) requires forward_range<_Base> { auto __tmp = *this; ++*this; return __tmp; } constexpr _Iterator& operator--() requires bidirectional_range<_Base> { --_M_current; return *this; } constexpr _Iterator operator--(int) requires bidirectional_range<_Base> { auto __tmp = *this; --*this; return __tmp; } constexpr _Iterator& operator+=(difference_type __n) requires random_access_range<_Base> { _M_current += __n; return *this; } constexpr _Iterator& operator-=(difference_type __n) requires random_access_range<_Base> { _M_current -= __n; return *this; } constexpr decltype(auto) operator[](difference_type __n) const requires random_access_range<_Base> { return std::__invoke(*_M_parent->_M_fun, _M_current[__n]); } friend constexpr bool operator==(const _Iterator& __x, const _Iterator& __y) requires equality_comparable<_Base_iter> { return __x._M_current == __y._M_current; } friend constexpr bool operator<(const _Iterator& __x, const _Iterator& __y) requires random_access_range<_Base> { return __x._M_current < __y._M_current; } friend constexpr bool operator>(const _Iterator& __x, const _Iterator& __y) requires random_access_range<_Base> { return __y < __x; } friend constexpr bool operator<=(const _Iterator& __x, const _Iterator& __y) requires random_access_range<_Base> { return !(__y < __x); } friend constexpr bool operator>=(const _Iterator& __x, const _Iterator& __y) requires random_access_range<_Base> { return !(__x < __y); } #ifdef __cpp_lib_three_way_comparison friend constexpr auto operator<=>(const _Iterator& __x, const _Iterator& __y) requires random_access_range<_Base> && three_way_comparable<_Base_iter> { return __x._M_current <=> __y._M_current; } #endif friend constexpr _Iterator operator+(_Iterator __i, difference_type __n) requires random_access_range<_Base> { return {__i._M_parent, __i._M_current + __n}; } friend constexpr _Iterator operator+(difference_type __n, _Iterator __i) requires random_access_range<_Base> { return {__i._M_parent, __i._M_current + __n}; } friend constexpr _Iterator operator-(_Iterator __i, difference_type __n) requires random_access_range<_Base> { return {__i._M_parent, __i._M_current - __n}; } // _GLIBCXX_RESOLVE_LIB_DEFECTS // 3483. transform_view::iterator's difference is overconstrained friend constexpr difference_type operator-(const _Iterator& __x, const _Iterator& __y) requires sized_sentinel_for, iterator_t<_Base>> { return __x._M_current - __y._M_current; } friend constexpr decltype(auto) iter_move(const _Iterator& __i) noexcept(noexcept(*__i)) { if constexpr (is_lvalue_reference_v) return std::move(*__i); else return *__i; } friend _Iterator; template friend struct _Sentinel; }; template struct _Sentinel { private: using _Parent = __detail::__maybe_const_t<_Const, transform_view>; using _Base = transform_view::_Base<_Const>; template constexpr auto __distance_from(const _Iterator<_Const2>& __i) const { return _M_end - __i._M_current; } template constexpr bool __equal(const _Iterator<_Const2>& __i) const { return __i._M_current == _M_end; } sentinel_t<_Base> _M_end = sentinel_t<_Base>(); public: _Sentinel() = default; constexpr explicit _Sentinel(sentinel_t<_Base> __end) : _M_end(__end) { } constexpr _Sentinel(_Sentinel __i) requires _Const && convertible_to, sentinel_t<_Base>> : _M_end(std::move(__i._M_end)) { } constexpr sentinel_t<_Base> base() const { return _M_end; } template requires sentinel_for, iterator_t<__detail::__maybe_const_t<_Const2, _Vp>>> friend constexpr bool operator==(const _Iterator<_Const2>& __x, const _Sentinel& __y) { return __y.__equal(__x); } template> requires sized_sentinel_for, iterator_t<_Base2>> friend constexpr range_difference_t<_Base2> operator-(const _Iterator<_Const2>& __x, const _Sentinel& __y) { return -__y.__distance_from(__x); } template> requires sized_sentinel_for, iterator_t<_Base2>> friend constexpr range_difference_t<_Base2> operator-(const _Sentinel& __y, const _Iterator<_Const2>& __x) { return __y.__distance_from(__x); } friend _Sentinel; }; [[no_unique_address]] __detail::__box<_Fp> _M_fun; _Vp _M_base = _Vp(); public: transform_view() = default; constexpr transform_view(_Vp __base, _Fp __fun) : _M_fun(std::move(__fun)), _M_base(std::move(__base)) { } constexpr _Vp base() const& requires copy_constructible<_Vp> { return _M_base ; } constexpr _Vp base() && { return std::move(_M_base); } constexpr _Iterator begin() { return _Iterator{this, ranges::begin(_M_base)}; } constexpr _Iterator begin() const requires range && regular_invocable> { return _Iterator{this, ranges::begin(_M_base)}; } constexpr _Sentinel end() { return _Sentinel{ranges::end(_M_base)}; } constexpr _Iterator end() requires common_range<_Vp> { return _Iterator{this, ranges::end(_M_base)}; } constexpr _Sentinel end() const requires range && regular_invocable> { return _Sentinel{ranges::end(_M_base)}; } constexpr _Iterator end() const requires common_range && regular_invocable> { return _Iterator{this, ranges::end(_M_base)}; } constexpr auto size() requires sized_range<_Vp> { return ranges::size(_M_base); } constexpr auto size() const requires sized_range { return ranges::size(_M_base); } }; template transform_view(_Range&&, _Fp) -> transform_view, _Fp>; namespace views { namespace __detail { template concept __can_transform_view = requires { transform_view(std::declval<_Range>(), std::declval<_Fp>()); }; } // namespace __detail struct _Transform : __adaptor::_RangeAdaptor<_Transform> { template requires __detail::__can_transform_view<_Range, _Fp> constexpr auto operator()(_Range&& __r, _Fp&& __f) const { return transform_view(std::forward<_Range>(__r), std::forward<_Fp>(__f)); } using _RangeAdaptor<_Transform>::operator(); static constexpr int _S_arity = 2; static constexpr bool _S_has_simple_extra_args = true; }; inline constexpr _Transform transform; } // namespace views template class take_view : public view_interface> { private: template using _CI = counted_iterator< iterator_t<__detail::__maybe_const_t<_Const, _Vp>>>; template struct _Sentinel { private: using _Base = __detail::__maybe_const_t<_Const, _Vp>; sentinel_t<_Base> _M_end = sentinel_t<_Base>(); public: _Sentinel() = default; constexpr explicit _Sentinel(sentinel_t<_Base> __end) : _M_end(__end) { } constexpr _Sentinel(_Sentinel __s) requires _Const && convertible_to, sentinel_t<_Base>> : _M_end(std::move(__s._M_end)) { } constexpr sentinel_t<_Base> base() const { return _M_end; } friend constexpr bool operator==(const _CI<_Const>& __y, const _Sentinel& __x) { return __y.count() == 0 || __y.base() == __x._M_end; } template> requires sentinel_for, iterator_t<_Base2>> friend constexpr bool operator==(const _CI<_OtherConst>& __y, const _Sentinel& __x) { return __y.count() == 0 || __y.base() == __x._M_end; } friend _Sentinel; }; range_difference_t<_Vp> _M_count = 0; _Vp _M_base = _Vp(); public: take_view() = default; constexpr take_view(_Vp base, range_difference_t<_Vp> __count) : _M_count(std::move(__count)), _M_base(std::move(base)) { } constexpr _Vp base() const& requires copy_constructible<_Vp> { return _M_base; } constexpr _Vp base() && { return std::move(_M_base); } constexpr auto begin() requires (!__detail::__simple_view<_Vp>) { if constexpr (sized_range<_Vp>) { if constexpr (random_access_range<_Vp>) return ranges::begin(_M_base); else { auto __sz = size(); return counted_iterator(ranges::begin(_M_base), __sz); } } else return counted_iterator(ranges::begin(_M_base), _M_count); } constexpr auto begin() const requires range { if constexpr (sized_range) { if constexpr (random_access_range) return ranges::begin(_M_base); else { auto __sz = size(); return counted_iterator(ranges::begin(_M_base), __sz); } } else return counted_iterator(ranges::begin(_M_base), _M_count); } constexpr auto end() requires (!__detail::__simple_view<_Vp>) { if constexpr (sized_range<_Vp>) { if constexpr (random_access_range<_Vp>) return ranges::begin(_M_base) + size(); else return default_sentinel; } else return _Sentinel{ranges::end(_M_base)}; } constexpr auto end() const requires range { if constexpr (sized_range) { if constexpr (random_access_range) return ranges::begin(_M_base) + size(); else return default_sentinel; } else return _Sentinel{ranges::end(_M_base)}; } constexpr auto size() requires sized_range<_Vp> { auto __n = ranges::size(_M_base); return std::min(__n, static_cast(_M_count)); } constexpr auto size() const requires sized_range { auto __n = ranges::size(_M_base); return std::min(__n, static_cast(_M_count)); } }; // _GLIBCXX_RESOLVE_LIB_DEFECTS // 3447. Deduction guides for take_view and drop_view have different // constraints template take_view(_Range&&, range_difference_t<_Range>) -> take_view>; template inline constexpr bool enable_borrowed_range> = enable_borrowed_range<_Tp>; namespace views { namespace __detail { template concept __can_take_view = requires { take_view(std::declval<_Range>(), std::declval<_Tp>()); }; } // namespace __detail struct _Take : __adaptor::_RangeAdaptor<_Take> { template requires __detail::__can_take_view<_Range, _Tp> constexpr auto operator()(_Range&& __r, _Tp&& __n) const { return take_view(std::forward<_Range>(__r), std::forward<_Tp>(__n)); } using _RangeAdaptor<_Take>::operator(); static constexpr int _S_arity = 2; // The count argument of views::take is not always simple -- it can be // e.g. a move-only class that's implicitly convertible to the difference // type. But an integer-like count argument is surely simple. template static constexpr bool _S_has_simple_extra_args = ranges::__detail::__is_integer_like<_Tp>; }; inline constexpr _Take take; } // namespace views template requires input_range<_Vp> && is_object_v<_Pred> && indirect_unary_predicate> class take_while_view : public view_interface> { template struct _Sentinel { private: using _Base = __detail::__maybe_const_t<_Const, _Vp>; sentinel_t<_Base> _M_end = sentinel_t<_Base>(); const _Pred* _M_pred = nullptr; public: _Sentinel() = default; constexpr explicit _Sentinel(sentinel_t<_Base> __end, const _Pred* __pred) : _M_end(__end), _M_pred(__pred) { } constexpr _Sentinel(_Sentinel __s) requires _Const && convertible_to, sentinel_t<_Base>> : _M_end(__s._M_end), _M_pred(__s._M_pred) { } constexpr sentinel_t<_Base> base() const { return _M_end; } friend constexpr bool operator==(const iterator_t<_Base>& __x, const _Sentinel& __y) { return __y._M_end == __x || !std::__invoke(*__y._M_pred, *__x); } template> requires sentinel_for, iterator_t<_Base2>> friend constexpr bool operator==(const iterator_t<_Base2>& __x, const _Sentinel& __y) { return __y._M_end == __x || !std::__invoke(*__y._M_pred, *__x); } friend _Sentinel; }; [[no_unique_address]] __detail::__box<_Pred> _M_pred; _Vp _M_base = _Vp(); public: take_while_view() = default; constexpr take_while_view(_Vp base, _Pred __pred) : _M_pred(std::move(__pred)), _M_base(std::move(base)) { } constexpr _Vp base() const& requires copy_constructible<_Vp> { return _M_base; } constexpr _Vp base() && { return std::move(_M_base); } constexpr const _Pred& pred() const { return *_M_pred; } constexpr auto begin() requires (!__detail::__simple_view<_Vp>) { return ranges::begin(_M_base); } constexpr auto begin() const requires range && indirect_unary_predicate> { return ranges::begin(_M_base); } constexpr auto end() requires (!__detail::__simple_view<_Vp>) { return _Sentinel(ranges::end(_M_base), std::__addressof(*_M_pred)); } constexpr auto end() const requires range && indirect_unary_predicate> { return _Sentinel(ranges::end(_M_base), std::__addressof(*_M_pred)); } }; template take_while_view(_Range&&, _Pred) -> take_while_view, _Pred>; namespace views { namespace __detail { template concept __can_take_while_view = requires { take_while_view(std::declval<_Range>(), std::declval<_Pred>()); }; } // namespace __detail struct _TakeWhile : __adaptor::_RangeAdaptor<_TakeWhile> { template requires __detail::__can_take_while_view<_Range, _Pred> constexpr auto operator()(_Range&& __r, _Pred&& __p) const { return take_while_view(std::forward<_Range>(__r), std::forward<_Pred>(__p)); } using _RangeAdaptor<_TakeWhile>::operator(); static constexpr int _S_arity = 2; static constexpr bool _S_has_simple_extra_args = true; }; inline constexpr _TakeWhile take_while; } // namespace views template class drop_view : public view_interface> { private: range_difference_t<_Vp> _M_count = 0; _Vp _M_base = _Vp(); // ranges::next(begin(base), count, end(base)) is O(1) if _Vp satisfies // both random_access_range and sized_range. Otherwise, cache its result. static constexpr bool _S_needs_cached_begin = !(random_access_range && sized_range); [[no_unique_address]] __detail::__maybe_present_t<_S_needs_cached_begin, __detail::_CachedPosition<_Vp>> _M_cached_begin; public: drop_view() = default; constexpr drop_view(_Vp __base, range_difference_t<_Vp> __count) : _M_count(__count), _M_base(std::move(__base)) { __glibcxx_assert(__count >= 0); } constexpr _Vp base() const& requires copy_constructible<_Vp> { return _M_base; } constexpr _Vp base() && { return std::move(_M_base); } // This overload is disabled for simple views with constant-time begin(). constexpr auto begin() requires (!(__detail::__simple_view<_Vp> && random_access_range && sized_range)) { if constexpr (_S_needs_cached_begin) if (_M_cached_begin._M_has_value()) return _M_cached_begin._M_get(_M_base); auto __it = ranges::next(ranges::begin(_M_base), _M_count, ranges::end(_M_base)); if constexpr (_S_needs_cached_begin) _M_cached_begin._M_set(_M_base, __it); return __it; } // _GLIBCXX_RESOLVE_LIB_DEFECTS // 3482. drop_view's const begin should additionally require sized_range constexpr auto begin() const requires random_access_range && sized_range { return ranges::next(ranges::begin(_M_base), _M_count, ranges::end(_M_base)); } constexpr auto end() requires (!__detail::__simple_view<_Vp>) { return ranges::end(_M_base); } constexpr auto end() const requires range { return ranges::end(_M_base); } constexpr auto size() requires sized_range<_Vp> { const auto __s = ranges::size(_M_base); const auto __c = static_cast(_M_count); return __s < __c ? 0 : __s - __c; } constexpr auto size() const requires sized_range { const auto __s = ranges::size(_M_base); const auto __c = static_cast(_M_count); return __s < __c ? 0 : __s - __c; } }; template drop_view(_Range&&, range_difference_t<_Range>) -> drop_view>; template inline constexpr bool enable_borrowed_range> = enable_borrowed_range<_Tp>; namespace views { namespace __detail { template concept __can_drop_view = requires { drop_view(std::declval<_Range>(), std::declval<_Tp>()); }; } // namespace __detail struct _Drop : __adaptor::_RangeAdaptor<_Drop> { template requires __detail::__can_drop_view<_Range, _Tp> constexpr auto operator()(_Range&& __r, _Tp&& __n) const { return drop_view(std::forward<_Range>(__r), std::forward<_Tp>(__n)); } using _RangeAdaptor<_Drop>::operator(); static constexpr int _S_arity = 2; template static constexpr bool _S_has_simple_extra_args = _Take::_S_has_simple_extra_args<_Tp>; }; inline constexpr _Drop drop; } // namespace views template requires input_range<_Vp> && is_object_v<_Pred> && indirect_unary_predicate> class drop_while_view : public view_interface> { private: [[no_unique_address]] __detail::__box<_Pred> _M_pred; [[no_unique_address]] __detail::_CachedPosition<_Vp> _M_cached_begin; _Vp _M_base = _Vp(); public: drop_while_view() = default; constexpr drop_while_view(_Vp __base, _Pred __pred) : _M_pred(std::move(__pred)), _M_base(std::move(__base)) { } constexpr _Vp base() const& requires copy_constructible<_Vp> { return _M_base; } constexpr _Vp base() && { return std::move(_M_base); } constexpr const _Pred& pred() const { return *_M_pred; } constexpr auto begin() { if (_M_cached_begin._M_has_value()) return _M_cached_begin._M_get(_M_base); auto __it = __detail::find_if_not(ranges::begin(_M_base), ranges::end(_M_base), std::cref(*_M_pred)); _M_cached_begin._M_set(_M_base, __it); return __it; } constexpr auto end() { return ranges::end(_M_base); } }; template drop_while_view(_Range&&, _Pred) -> drop_while_view, _Pred>; template inline constexpr bool enable_borrowed_range> = enable_borrowed_range<_Tp>; namespace views { namespace __detail { template concept __can_drop_while_view = requires { drop_while_view(std::declval<_Range>(), std::declval<_Pred>()); }; } // namespace __detail struct _DropWhile : __adaptor::_RangeAdaptor<_DropWhile> { template requires __detail::__can_drop_while_view<_Range, _Pred> constexpr auto operator()(_Range&& __r, _Pred&& __p) const { return drop_while_view(std::forward<_Range>(__r), std::forward<_Pred>(__p)); } using _RangeAdaptor<_DropWhile>::operator(); static constexpr int _S_arity = 2; static constexpr bool _S_has_simple_extra_args = true; }; inline constexpr _DropWhile drop_while; } // namespace views template requires view<_Vp> && input_range> class join_view : public view_interface> { private: using _InnerRange = range_reference_t<_Vp>; template using _Base = __detail::__maybe_const_t<_Const, _Vp>; template using _Outer_iter = iterator_t<_Base<_Const>>; template using _Inner_iter = iterator_t>>; template static constexpr bool _S_ref_is_glvalue = is_reference_v>>; template struct __iter_cat { }; template requires _S_ref_is_glvalue<_Const> && forward_range<_Base<_Const>> && forward_range>> struct __iter_cat<_Const> { private: static constexpr auto _S_iter_cat() { using _Outer_iter = join_view::_Outer_iter<_Const>; using _Inner_iter = join_view::_Inner_iter<_Const>; using _OuterCat = typename iterator_traits<_Outer_iter>::iterator_category; using _InnerCat = typename iterator_traits<_Inner_iter>::iterator_category; if constexpr (derived_from<_OuterCat, bidirectional_iterator_tag> && derived_from<_InnerCat, bidirectional_iterator_tag>) return bidirectional_iterator_tag{}; else if constexpr (derived_from<_OuterCat, forward_iterator_tag> && derived_from<_InnerCat, forward_iterator_tag>) return forward_iterator_tag{}; else return input_iterator_tag{}; } public: using iterator_category = decltype(_S_iter_cat()); }; template struct _Sentinel; template struct _Iterator : __iter_cat<_Const> { private: using _Parent = __detail::__maybe_const_t<_Const, join_view>; using _Base = join_view::_Base<_Const>; static constexpr bool _S_ref_is_glvalue = join_view::_S_ref_is_glvalue<_Const>; constexpr void _M_satisfy() { auto __update_inner = [this] (const iterator_t<_Base>& __x) -> auto&& { if constexpr (_S_ref_is_glvalue) return *__x; else return _M_parent->_M_inner._M_emplace_deref(__x); }; for (; _M_outer != ranges::end(_M_parent->_M_base); ++_M_outer) { auto&& __inner = __update_inner(_M_outer); _M_inner = ranges::begin(__inner); if (_M_inner != ranges::end(__inner)) return; } if constexpr (_S_ref_is_glvalue) _M_inner = _Inner_iter(); } static constexpr auto _S_iter_concept() { if constexpr (_S_ref_is_glvalue && bidirectional_range<_Base> && bidirectional_range>) return bidirectional_iterator_tag{}; else if constexpr (_S_ref_is_glvalue && forward_range<_Base> && forward_range>) return forward_iterator_tag{}; else return input_iterator_tag{}; } using _Outer_iter = join_view::_Outer_iter<_Const>; using _Inner_iter = join_view::_Inner_iter<_Const>; _Outer_iter _M_outer = _Outer_iter(); _Inner_iter _M_inner = _Inner_iter(); _Parent* _M_parent = nullptr; public: using iterator_concept = decltype(_S_iter_concept()); // iterator_category defined in __join_view_iter_cat using value_type = range_value_t>; using difference_type = common_type_t, range_difference_t>>; _Iterator() = default; constexpr _Iterator(_Parent* __parent, _Outer_iter __outer) : _M_outer(std::move(__outer)), _M_parent(__parent) { _M_satisfy(); } constexpr _Iterator(_Iterator __i) requires _Const && convertible_to, _Outer_iter> && convertible_to, _Inner_iter> : _M_outer(std::move(__i._M_outer)), _M_inner(__i._M_inner), _M_parent(__i._M_parent) { } constexpr decltype(auto) operator*() const { return *_M_inner; } // _GLIBCXX_RESOLVE_LIB_DEFECTS // 3500. join_view::iterator::operator->() is bogus constexpr _Inner_iter operator->() const requires __detail::__has_arrow<_Inner_iter> && copyable<_Inner_iter> { return _M_inner; } constexpr _Iterator& operator++() { auto&& __inner_range = [this] () -> auto&& { if constexpr (_S_ref_is_glvalue) return *_M_outer; else return *_M_parent->_M_inner; }(); if (++_M_inner == ranges::end(__inner_range)) { ++_M_outer; _M_satisfy(); } return *this; } constexpr void operator++(int) { ++*this; } constexpr _Iterator operator++(int) requires _S_ref_is_glvalue && forward_range<_Base> && forward_range> { auto __tmp = *this; ++*this; return __tmp; } constexpr _Iterator& operator--() requires _S_ref_is_glvalue && bidirectional_range<_Base> && bidirectional_range> && common_range> { if (_M_outer == ranges::end(_M_parent->_M_base)) _M_inner = ranges::end(*--_M_outer); while (_M_inner == ranges::begin(*_M_outer)) _M_inner = ranges::end(*--_M_outer); --_M_inner; return *this; } constexpr _Iterator operator--(int) requires _S_ref_is_glvalue && bidirectional_range<_Base> && bidirectional_range> && common_range> { auto __tmp = *this; --*this; return __tmp; } friend constexpr bool operator==(const _Iterator& __x, const _Iterator& __y) requires _S_ref_is_glvalue && equality_comparable<_Outer_iter> && equality_comparable<_Inner_iter> { return (__x._M_outer == __y._M_outer && __x._M_inner == __y._M_inner); } friend constexpr decltype(auto) iter_move(const _Iterator& __i) noexcept(noexcept(ranges::iter_move(__i._M_inner))) { return ranges::iter_move(__i._M_inner); } friend constexpr void iter_swap(const _Iterator& __x, const _Iterator& __y) noexcept(noexcept(ranges::iter_swap(__x._M_inner, __y._M_inner))) requires indirectly_swappable<_Inner_iter> { return ranges::iter_swap(__x._M_inner, __y._M_inner); } friend _Iterator; template friend struct _Sentinel; }; template struct _Sentinel { private: using _Parent = __detail::__maybe_const_t<_Const, join_view>; using _Base = join_view::_Base<_Const>; template constexpr bool __equal(const _Iterator<_Const2>& __i) const { return __i._M_outer == _M_end; } sentinel_t<_Base> _M_end = sentinel_t<_Base>(); public: _Sentinel() = default; constexpr explicit _Sentinel(_Parent* __parent) : _M_end(ranges::end(__parent->_M_base)) { } constexpr _Sentinel(_Sentinel __s) requires _Const && convertible_to, sentinel_t<_Base>> : _M_end(std::move(__s._M_end)) { } template requires sentinel_for, iterator_t<__detail::__maybe_const_t<_Const2, _Vp>>> friend constexpr bool operator==(const _Iterator<_Const2>& __x, const _Sentinel& __y) { return __y.__equal(__x); } friend _Sentinel; }; [[no_unique_address]] __detail::__non_propagating_cache> _M_inner; _Vp _M_base = _Vp(); public: join_view() = default; constexpr explicit join_view(_Vp __base) : _M_base(std::move(__base)) { } constexpr _Vp base() const& requires copy_constructible<_Vp> { return _M_base; } constexpr _Vp base() && { return std::move(_M_base); } constexpr auto begin() { constexpr bool __use_const = (__detail::__simple_view<_Vp> && is_reference_v>); return _Iterator<__use_const>{this, ranges::begin(_M_base)}; } constexpr auto begin() const requires input_range && is_reference_v> { return _Iterator{this, ranges::begin(_M_base)}; } constexpr auto end() { if constexpr (forward_range<_Vp> && is_reference_v<_InnerRange> && forward_range<_InnerRange> && common_range<_Vp> && common_range<_InnerRange>) return _Iterator<__detail::__simple_view<_Vp>>{this, ranges::end(_M_base)}; else return _Sentinel<__detail::__simple_view<_Vp>>{this}; } constexpr auto end() const requires input_range && is_reference_v> { if constexpr (forward_range && is_reference_v> && forward_range> && common_range && common_range>) return _Iterator{this, ranges::end(_M_base)}; else return _Sentinel{this}; } }; template explicit join_view(_Range&&) -> join_view>; namespace views { namespace __detail { template concept __can_join_view = requires { join_view>{std::declval<_Range>()}; }; } // namespace __detail struct _Join : __adaptor::_RangeAdaptorClosure { template requires __detail::__can_join_view<_Range> constexpr auto operator()(_Range&& __r) const { // _GLIBCXX_RESOLVE_LIB_DEFECTS // 3474. Nesting join_views is broken because of CTAD return join_view>{std::forward<_Range>(__r)}; } static constexpr bool _S_has_simple_call_op = true; }; inline constexpr _Join join; } // namespace views namespace __detail { template struct __require_constant; template concept __tiny_range = sized_range<_Range> && requires { typename __require_constant::size()>; } && (remove_reference_t<_Range>::size() <= 1); template struct __split_view_outer_iter_cat { }; template struct __split_view_outer_iter_cat<_Base> { using iterator_category = input_iterator_tag; }; template struct __split_view_inner_iter_cat { }; template struct __split_view_inner_iter_cat<_Base> { private: static constexpr auto _S_iter_cat() { using _Cat = typename iterator_traits>::iterator_category; if constexpr (derived_from<_Cat, forward_iterator_tag>) return forward_iterator_tag{}; else return _Cat{}; } public: using iterator_category = decltype(_S_iter_cat()); }; } template requires view<_Vp> && view<_Pattern> && indirectly_comparable, iterator_t<_Pattern>, ranges::equal_to> && (forward_range<_Vp> || __detail::__tiny_range<_Pattern>) class split_view : public view_interface> { private: template using _Base = __detail::__maybe_const_t<_Const, _Vp>; template struct _InnerIter; template struct _OuterIter : __detail::__split_view_outer_iter_cat<_Base<_Const>> { private: using _Parent = __detail::__maybe_const_t<_Const, split_view>; using _Base = split_view::_Base<_Const>; constexpr bool __at_end() const { return __current() == ranges::end(_M_parent->_M_base); } // [range.split.outer] p1 // Many of the following specifications refer to the notional member // current of outer-iterator. current is equivalent to current_ if // V models forward_range, and parent_->current_ otherwise. constexpr auto& __current() noexcept { if constexpr (forward_range<_Vp>) return _M_current; else return _M_parent->_M_current; } constexpr auto& __current() const noexcept { if constexpr (forward_range<_Vp>) return _M_current; else return _M_parent->_M_current; } _Parent* _M_parent = nullptr; // XXX: _M_current is present only if "V models forward_range" [[no_unique_address]] __detail::__maybe_present_t, iterator_t<_Base>> _M_current; public: using iterator_concept = conditional_t, forward_iterator_tag, input_iterator_tag>; // iterator_category defined in __split_view_outer_iter_cat using difference_type = range_difference_t<_Base>; struct value_type : view_interface { private: _OuterIter _M_i = _OuterIter(); public: value_type() = default; constexpr explicit value_type(_OuterIter __i) : _M_i(std::move(__i)) { } constexpr _InnerIter<_Const> begin() const requires copyable<_OuterIter> { return _InnerIter<_Const>{_M_i}; } constexpr _InnerIter<_Const> begin() requires (!copyable<_OuterIter>) { return _InnerIter<_Const>{std::move(_M_i)}; } constexpr default_sentinel_t end() const { return default_sentinel; } }; _OuterIter() = default; constexpr explicit _OuterIter(_Parent* __parent) requires (!forward_range<_Base>) : _M_parent(__parent) { } constexpr _OuterIter(_Parent* __parent, iterator_t<_Base> __current) requires forward_range<_Base> : _M_parent(__parent), _M_current(std::move(__current)) { } constexpr _OuterIter(_OuterIter __i) requires _Const && convertible_to, iterator_t<_Base>> : _M_parent(__i._M_parent), _M_current(std::move(__i._M_current)) { } constexpr value_type operator*() const { return value_type{*this}; } constexpr _OuterIter& operator++() { // _GLIBCXX_RESOLVE_LIB_DEFECTS // 3505. split_view::outer-iterator::operator++ misspecified const auto __end = ranges::end(_M_parent->_M_base); if (__current() == __end) return *this; const auto [__pbegin, __pend] = subrange{_M_parent->_M_pattern}; if (__pbegin == __pend) ++__current(); else if constexpr (__detail::__tiny_range<_Pattern>) { __current() = __detail::find(std::move(__current()), __end, *__pbegin); if (__current() != __end) ++__current(); } else do { auto [__b, __p] = __detail::mismatch(__current(), __end, __pbegin, __pend); if (__p == __pend) { __current() = __b; break; } } while (++__current() != __end); return *this; } constexpr decltype(auto) operator++(int) { if constexpr (forward_range<_Base>) { auto __tmp = *this; ++*this; return __tmp; } else ++*this; } friend constexpr bool operator==(const _OuterIter& __x, const _OuterIter& __y) requires forward_range<_Base> { return __x._M_current == __y._M_current; } friend constexpr bool operator==(const _OuterIter& __x, default_sentinel_t) { return __x.__at_end(); }; friend _OuterIter; friend _InnerIter<_Const>; }; template struct _InnerIter : __detail::__split_view_inner_iter_cat<_Base<_Const>> { private: using _Base = split_view::_Base<_Const>; constexpr bool __at_end() const { auto [__pcur, __pend] = subrange{_M_i._M_parent->_M_pattern}; auto __end = ranges::end(_M_i._M_parent->_M_base); if constexpr (__detail::__tiny_range<_Pattern>) { const auto& __cur = _M_i_current(); if (__cur == __end) return true; if (__pcur == __pend) return _M_incremented; return *__cur == *__pcur; } else { auto __cur = _M_i_current(); if (__cur == __end) return true; if (__pcur == __pend) return _M_incremented; do { if (*__cur != *__pcur) return false; if (++__pcur == __pend) return true; } while (++__cur != __end); return false; } } constexpr auto& _M_i_current() noexcept { return _M_i.__current(); } constexpr auto& _M_i_current() const noexcept { return _M_i.__current(); } _OuterIter<_Const> _M_i = _OuterIter<_Const>(); bool _M_incremented = false; public: using iterator_concept = typename _OuterIter<_Const>::iterator_concept; // iterator_category defined in __split_view_inner_iter_cat using value_type = range_value_t<_Base>; using difference_type = range_difference_t<_Base>; _InnerIter() = default; constexpr explicit _InnerIter(_OuterIter<_Const> __i) : _M_i(std::move(__i)) { } constexpr decltype(auto) operator*() const { return *_M_i_current(); } constexpr _InnerIter& operator++() { _M_incremented = true; if constexpr (!forward_range<_Base>) if constexpr (_Pattern::size() == 0) return *this; ++_M_i_current(); return *this; } constexpr decltype(auto) operator++(int) { if constexpr (forward_range<_Base>) { auto __tmp = *this; ++*this; return __tmp; } else ++*this; } friend constexpr bool operator==(const _InnerIter& __x, const _InnerIter& __y) requires forward_range<_Base> { return __x._M_i == __y._M_i; } friend constexpr bool operator==(const _InnerIter& __x, default_sentinel_t) { return __x.__at_end(); } friend constexpr decltype(auto) iter_move(const _InnerIter& __i) noexcept(noexcept(ranges::iter_move(__i._M_i_current()))) { return ranges::iter_move(__i._M_i_current()); } friend constexpr void iter_swap(const _InnerIter& __x, const _InnerIter& __y) noexcept(noexcept(ranges::iter_swap(__x._M_i_current(), __y._M_i_current()))) requires indirectly_swappable> { ranges::iter_swap(__x._M_i_current(), __y._M_i_current()); } }; _Pattern _M_pattern = _Pattern(); // XXX: _M_current is "present only if !forward_range" [[no_unique_address]] __detail::__maybe_present_t, iterator_t<_Vp>> _M_current; _Vp _M_base = _Vp(); public: split_view() = default; constexpr split_view(_Vp __base, _Pattern __pattern) : _M_pattern(std::move(__pattern)), _M_base(std::move(__base)) { } template requires constructible_from<_Vp, views::all_t<_Range>> && constructible_from<_Pattern, single_view>> constexpr split_view(_Range&& __r, range_value_t<_Range> __e) : _M_pattern(views::single(std::move(__e))), _M_base(views::all(std::forward<_Range>(__r))) { } constexpr _Vp base() const& requires copy_constructible<_Vp> { return _M_base; } constexpr _Vp base() && { return std::move(_M_base); } constexpr auto begin() { if constexpr (forward_range<_Vp>) return _OuterIter<__detail::__simple_view<_Vp>>{ this, ranges::begin(_M_base)}; else { _M_current = ranges::begin(_M_base); return _OuterIter{this}; } } constexpr auto begin() const requires forward_range<_Vp> && forward_range { return _OuterIter{this, ranges::begin(_M_base)}; } constexpr auto end() requires forward_range<_Vp> && common_range<_Vp> { return _OuterIter<__detail::__simple_view<_Vp>>{ this, ranges::end(_M_base)}; } constexpr auto end() const { if constexpr (forward_range<_Vp> && forward_range && common_range) return _OuterIter{this, ranges::end(_M_base)}; else return default_sentinel; } }; template split_view(_Range&&, _Pattern&&) -> split_view, views::all_t<_Pattern>>; template split_view(_Range&&, range_value_t<_Range>) -> split_view, single_view>>; namespace views { namespace __detail { template concept __can_split_view = requires { split_view(std::declval<_Range>(), std::declval<_Pattern>()); }; } // namespace __detail struct _Split : __adaptor::_RangeAdaptor<_Split> { template requires __detail::__can_split_view<_Range, _Pattern> constexpr auto operator()(_Range&& __r, _Pattern&& __f) const { return split_view(std::forward<_Range>(__r), std::forward<_Pattern>(__f)); } using _RangeAdaptor<_Split>::operator(); static constexpr int _S_arity = 2; // The pattern argument of views::split is not always simple -- it can be // a non-view range, the value category of which affects whether the call // is well-formed. But a scalar or a view pattern argument is surely // simple. template static constexpr bool _S_has_simple_extra_args = is_scalar_v<_Pattern> || (view<_Pattern> && copy_constructible<_Pattern>); }; inline constexpr _Split split; } // namespace views namespace views { struct _Counted { template constexpr auto operator()(_Iter __i, iter_difference_t<_Iter> __n) const { if constexpr (random_access_iterator<_Iter>) return subrange(__i, __i + __n); else return subrange(counted_iterator(std::move(__i), __n), default_sentinel); } }; inline constexpr _Counted counted{}; } // namespace views template requires (!common_range<_Vp>) && copyable> class common_view : public view_interface> { private: _Vp _M_base = _Vp(); public: common_view() = default; constexpr explicit common_view(_Vp __r) : _M_base(std::move(__r)) { } /* XXX: LWG 3280 didn't remove this constructor, but I think it should? template requires (!common_range<_Range>) && constructible_from<_Vp, views::all_t<_Range>> constexpr explicit common_view(_Range&& __r) : _M_base(views::all(std::forward<_Range>(__r))) { } */ constexpr _Vp base() const& requires copy_constructible<_Vp> { return _M_base; } constexpr _Vp base() && { return std::move(_M_base); } constexpr auto begin() { if constexpr (random_access_range<_Vp> && sized_range<_Vp>) return ranges::begin(_M_base); else return common_iterator, sentinel_t<_Vp>> (ranges::begin(_M_base)); } constexpr auto begin() const requires range { if constexpr (random_access_range && sized_range) return ranges::begin(_M_base); else return common_iterator, sentinel_t> (ranges::begin(_M_base)); } constexpr auto end() { if constexpr (random_access_range<_Vp> && sized_range<_Vp>) return ranges::begin(_M_base) + ranges::size(_M_base); else return common_iterator, sentinel_t<_Vp>> (ranges::end(_M_base)); } constexpr auto end() const requires range { if constexpr (random_access_range && sized_range) return ranges::begin(_M_base) + ranges::size(_M_base); else return common_iterator, sentinel_t> (ranges::end(_M_base)); } constexpr auto size() requires sized_range<_Vp> { return ranges::size(_M_base); } constexpr auto size() const requires sized_range { return ranges::size(_M_base); } }; template common_view(_Range&&) -> common_view>; template inline constexpr bool enable_borrowed_range> = enable_borrowed_range<_Tp>; namespace views { namespace __detail { template concept __already_common = common_range<_Range> && requires { views::all(std::declval<_Range>()); }; template concept __can_common_view = requires { common_view{std::declval<_Range>()}; }; } // namespace __detail struct _Common : __adaptor::_RangeAdaptorClosure { template requires __detail::__already_common<_Range> || __detail::__can_common_view<_Range> constexpr auto operator()(_Range&& __r) const { if constexpr (__detail::__already_common<_Range>) return views::all(std::forward<_Range>(__r)); else return common_view{std::forward<_Range>(__r)}; } static constexpr bool _S_has_simple_call_op = true; }; inline constexpr _Common common; } // namespace views template requires bidirectional_range<_Vp> class reverse_view : public view_interface> { private: static constexpr bool _S_needs_cached_begin = !common_range<_Vp> && !random_access_range<_Vp>; [[no_unique_address]] __detail::__maybe_present_t<_S_needs_cached_begin, __detail::_CachedPosition<_Vp>> _M_cached_begin; _Vp _M_base = _Vp(); public: reverse_view() = default; constexpr explicit reverse_view(_Vp __r) : _M_base(std::move(__r)) { } constexpr _Vp base() const& requires copy_constructible<_Vp> { return _M_base; } constexpr _Vp base() && { return std::move(_M_base); } constexpr reverse_iterator> begin() { if constexpr (_S_needs_cached_begin) if (_M_cached_begin._M_has_value()) return std::make_reverse_iterator(_M_cached_begin._M_get(_M_base)); auto __it = ranges::next(ranges::begin(_M_base), ranges::end(_M_base)); if constexpr (_S_needs_cached_begin) _M_cached_begin._M_set(_M_base, __it); return std::make_reverse_iterator(std::move(__it)); } constexpr auto begin() requires common_range<_Vp> { return std::make_reverse_iterator(ranges::end(_M_base)); } constexpr auto begin() const requires common_range { return std::make_reverse_iterator(ranges::end(_M_base)); } constexpr reverse_iterator> end() { return std::make_reverse_iterator(ranges::begin(_M_base)); } constexpr auto end() const requires common_range { return std::make_reverse_iterator(ranges::begin(_M_base)); } constexpr auto size() requires sized_range<_Vp> { return ranges::size(_M_base); } constexpr auto size() const requires sized_range { return ranges::size(_M_base); } }; template reverse_view(_Range&&) -> reverse_view>; template inline constexpr bool enable_borrowed_range> = enable_borrowed_range<_Tp>; namespace views { namespace __detail { template inline constexpr bool __is_reversible_subrange = false; template inline constexpr bool __is_reversible_subrange, reverse_iterator<_Iter>, _Kind>> = true; template inline constexpr bool __is_reverse_view = false; template inline constexpr bool __is_reverse_view> = true; template concept __can_reverse_view = requires { reverse_view{std::declval<_Range>()}; }; } // namespace __detail struct _Reverse : __adaptor::_RangeAdaptorClosure { template requires __detail::__is_reverse_view> || __detail::__is_reversible_subrange> || __detail::__can_reverse_view<_Range> constexpr auto operator()(_Range&& __r) const { using _Tp = remove_cvref_t<_Range>; if constexpr (__detail::__is_reverse_view<_Tp>) return std::forward<_Range>(__r).base(); else if constexpr (__detail::__is_reversible_subrange<_Tp>) { using _Iter = decltype(ranges::begin(__r).base()); if constexpr (sized_range<_Tp>) return subrange<_Iter, _Iter, subrange_kind::sized> {__r.end().base(), __r.begin().base(), __r.size()}; else return subrange<_Iter, _Iter, subrange_kind::unsized> {__r.end().base(), __r.begin().base()}; } else return reverse_view{std::forward<_Range>(__r)}; } static constexpr bool _S_has_simple_call_op = true; }; inline constexpr _Reverse reverse; } // namespace views namespace __detail { template concept __has_tuple_element = requires(_Tp __t) { typename tuple_size<_Tp>::type; requires _Nm < tuple_size_v<_Tp>; typename tuple_element_t<_Nm, _Tp>; { std::get<_Nm>(__t) } -> convertible_to&>; }; template concept __returnable_element = is_reference_v<_Tp> || move_constructible>; } template requires view<_Vp> && __detail::__has_tuple_element, _Nm> && __detail::__has_tuple_element>, _Nm> && __detail::__returnable_element, _Nm> class elements_view : public view_interface> { public: elements_view() = default; constexpr explicit elements_view(_Vp base) : _M_base(std::move(base)) { } constexpr const _Vp& base() const & noexcept { return _M_base; } constexpr _Vp base() && { return std::move(_M_base); } constexpr auto begin() requires (!__detail::__simple_view<_Vp>) { return _Iterator(ranges::begin(_M_base)); } constexpr auto begin() const requires range { return _Iterator(ranges::begin(_M_base)); } constexpr auto end() requires (!__detail::__simple_view<_Vp> && !common_range<_Vp>) { return _Sentinel{ranges::end(_M_base)}; } constexpr auto end() requires (!__detail::__simple_view<_Vp> && common_range<_Vp>) { return _Iterator{ranges::end(_M_base)}; } constexpr auto end() const requires range { return _Sentinel{ranges::end(_M_base)}; } constexpr auto end() const requires common_range { return _Iterator{ranges::end(_M_base)}; } constexpr auto size() requires sized_range<_Vp> { return ranges::size(_M_base); } constexpr auto size() const requires sized_range { return ranges::size(_M_base); } private: template using _Base = __detail::__maybe_const_t<_Const, _Vp>; template struct __iter_cat { }; template requires forward_range<_Base<_Const>> struct __iter_cat<_Const> { private: static auto _S_iter_cat() { using _Base = elements_view::_Base<_Const>; using _Cat = typename iterator_traits>::iterator_category; using _Res = decltype((std::get<_Nm>(*std::declval>()))); if constexpr (!is_lvalue_reference_v<_Res>) return input_iterator_tag{}; else if constexpr (derived_from<_Cat, random_access_iterator_tag>) return random_access_iterator_tag{}; else return _Cat{}; } public: using iterator_category = decltype(_S_iter_cat()); }; template struct _Sentinel; template struct _Iterator : __iter_cat<_Const> { private: using _Base = elements_view::_Base<_Const>; iterator_t<_Base> _M_current = iterator_t<_Base>(); static constexpr decltype(auto) _S_get_element(const iterator_t<_Base>& __i) { if constexpr (is_reference_v>) return std::get<_Nm>(*__i); else { using _Et = remove_cv_t>>; return static_cast<_Et>(std::get<_Nm>(*__i)); } } static auto _S_iter_concept() { if constexpr (random_access_range<_Vp>) return random_access_iterator_tag{}; else if constexpr (bidirectional_range<_Vp>) return bidirectional_iterator_tag{}; else if constexpr (forward_range<_Vp>) return forward_iterator_tag{}; else return input_iterator_tag{}; } friend _Iterator; public: using iterator_concept = decltype(_S_iter_concept()); // iterator_category defined in elements_view::__iter_cat using value_type = remove_cvref_t>>; using difference_type = range_difference_t<_Base>; _Iterator() = default; constexpr explicit _Iterator(iterator_t<_Base> current) : _M_current(std::move(current)) { } constexpr _Iterator(_Iterator i) requires _Const && convertible_to, iterator_t<_Base>> : _M_current(std::move(i._M_current)) { } constexpr iterator_t<_Base> base() const& requires copyable> { return _M_current; } constexpr iterator_t<_Base> base() && { return std::move(_M_current); } constexpr decltype(auto) operator*() const { return _S_get_element(_M_current); } constexpr _Iterator& operator++() { ++_M_current; return *this; } constexpr void operator++(int) { ++_M_current; } constexpr _Iterator operator++(int) requires forward_range<_Base> { auto __tmp = *this; ++_M_current; return __tmp; } constexpr _Iterator& operator--() requires bidirectional_range<_Base> { --_M_current; return *this; } constexpr _Iterator operator--(int) requires bidirectional_range<_Base> { auto __tmp = *this; --_M_current; return __tmp; } constexpr _Iterator& operator+=(difference_type __n) requires random_access_range<_Base> { _M_current += __n; return *this; } constexpr _Iterator& operator-=(difference_type __n) requires random_access_range<_Base> { _M_current -= __n; return *this; } constexpr decltype(auto) operator[](difference_type __n) const requires random_access_range<_Base> { return _S_get_element(_M_current + __n); } friend constexpr bool operator==(const _Iterator& __x, const _Iterator& __y) requires equality_comparable> { return __x._M_current == __y._M_current; } friend constexpr bool operator<(const _Iterator& __x, const _Iterator& __y) requires random_access_range<_Base> { return __x._M_current < __y._M_current; } friend constexpr bool operator>(const _Iterator& __x, const _Iterator& __y) requires random_access_range<_Base> { return __y._M_current < __x._M_current; } friend constexpr bool operator<=(const _Iterator& __x, const _Iterator& __y) requires random_access_range<_Base> { return !(__y._M_current > __x._M_current); } friend constexpr bool operator>=(const _Iterator& __x, const _Iterator& __y) requires random_access_range<_Base> { return !(__x._M_current > __y._M_current); } #ifdef __cpp_lib_three_way_comparison friend constexpr auto operator<=>(const _Iterator& __x, const _Iterator& __y) requires random_access_range<_Base> && three_way_comparable> { return __x._M_current <=> __y._M_current; } #endif friend constexpr _Iterator operator+(const _Iterator& __x, difference_type __y) requires random_access_range<_Base> { return _Iterator{__x} += __y; } friend constexpr _Iterator operator+(difference_type __x, const _Iterator& __y) requires random_access_range<_Base> { return __y + __x; } friend constexpr _Iterator operator-(const _Iterator& __x, difference_type __y) requires random_access_range<_Base> { return _Iterator{__x} -= __y; } // _GLIBCXX_RESOLVE_LIB_DEFECTS // 3483. transform_view::iterator's difference is overconstrained friend constexpr difference_type operator-(const _Iterator& __x, const _Iterator& __y) requires sized_sentinel_for, iterator_t<_Base>> { return __x._M_current - __y._M_current; } template friend struct _Sentinel; }; template struct _Sentinel { private: template constexpr bool _M_equal(const _Iterator<_Const2>& __x) const { return __x._M_current == _M_end; } template constexpr auto _M_distance_from(const _Iterator<_Const2>& __i) const { return _M_end - __i._M_current; } using _Base = elements_view::_Base<_Const>; sentinel_t<_Base> _M_end = sentinel_t<_Base>(); public: _Sentinel() = default; constexpr explicit _Sentinel(sentinel_t<_Base> __end) : _M_end(std::move(__end)) { } constexpr _Sentinel(_Sentinel __other) requires _Const && convertible_to, sentinel_t<_Base>> : _M_end(std::move(__other._M_end)) { } constexpr sentinel_t<_Base> base() const { return _M_end; } template requires sentinel_for, iterator_t<__detail::__maybe_const_t<_Const2, _Vp>>> friend constexpr bool operator==(const _Iterator<_Const2>& __x, const _Sentinel& __y) { return __y._M_equal(__x); } template> requires sized_sentinel_for, iterator_t<_Base2>> friend constexpr range_difference_t<_Base2> operator-(const _Iterator<_Const2>& __x, const _Sentinel& __y) { return -__y._M_distance_from(__x); } template> requires sized_sentinel_for, iterator_t<_Base2>> friend constexpr range_difference_t<_Base2> operator-(const _Sentinel& __x, const _Iterator<_Const2>& __y) { return __x._M_distance_from(__y); } friend _Sentinel; }; _Vp _M_base = _Vp(); }; template inline constexpr bool enable_borrowed_range> = enable_borrowed_range<_Tp>; template using keys_view = elements_view, 0>; template using values_view = elements_view, 1>; namespace views { namespace __detail { template concept __can_elements_view = requires { elements_view, _Nm>{std::declval<_Range>()}; }; } // namespace __detail template struct _Elements : __adaptor::_RangeAdaptorClosure { template requires __detail::__can_elements_view<_Nm, _Range> constexpr auto operator()(_Range&& __r) const { return elements_view, _Nm>{std::forward<_Range>(__r)}; } static constexpr bool _S_has_simple_call_op = true; }; template inline constexpr _Elements<_Nm> elements; inline constexpr auto keys = elements<0>; inline constexpr auto values = elements<1>; } // namespace views } // namespace ranges namespace views = ranges::views; _GLIBCXX_END_NAMESPACE_VERSION } // namespace #endif // library concepts #endif // C++2a #endif /* _GLIBCXX_RANGES */