
Swing JavaBuilder : Maximum
productivity with minimum code

Release 1.1

Jacek Furmankiewicz

December 21, 2010





CONTENTS

1 Introduction 1
1.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Overview 5
2.1 What is JavaBuilders all about? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Why would I use this instead of regular coding by hand? . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 What is YAML? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Compact YAML syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Swing JavaBuilder in 60 seconds or less 11

4 Core Features 17
4.1 Obtaining references to created components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Hooking up event listeners to Java methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Databinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Input validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Executing long running methods on a background thread . . . . . . . . . . . . . . . . . . . . . . . . 21
4.6 Executing multiple methods together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.7 Custom progress indicators for long running methods . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.8 Domain-specific Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.9 Internationalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.10 Enum property values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.11 Using custom components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.12 Custom global commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.13 Build events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.14 Hot deployment of UI components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.15 Logging via SLF4J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Swing Features 31
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Component properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Actions and menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Borders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

i



5.5 Button Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.6 Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.7 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.8 Fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.9 Icons and images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.10 JComboBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.11 JDesktopPane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.12 JFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.13 JList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.14 JScrollPane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.15 JSplitPane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.16 JTabbedPane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.17 JTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.18 Event handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.19 Customizing BetterBeansBinding logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Swing Layout Management 43
6.1 MigLayout DSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 MigLayout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3 CardLayout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.4 FlowLayout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.5 Other layout managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Plugins 51
7.1 Glazed Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8 Extending the JavaBuilders engine 55
8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2 Registering new component types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.3 Customizing object creation : ITypeHandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.4 Customizing initialization logic: ITypeHandlerAfterCreationProcessor . . . . . . . . . . . . . . . . 56
8.5 Customizing post-processing of children nodes; ITypeHandlerFinishProcessor . . . . . . . . . . . . 56

ii



CHAPTER

ONE

INTRODUCTION

1.1 Abstract

Swing JavaBuilder : making Swing development productive

“Just started on using the Swing JavaBuilder and i must say i like it. Just replaced 170 rules of Java code
with only 13 lines YAML” Comment posted the JavaBuilders forum

The Swing JavaBuilder is a library whose sole goal is to maximize the productivity of a Swing developer. It’s main
goal is tackling all the Swing pain points, in particular the complexity and verbosity of the API and reducing it to the
smallest amount of code possible.

This is accomplished by moving all the boring gruntwork of Swing interface creation to an external YAML file, which
has a 1-to-1 match with a backing Java class (e.g. a JFrame or JPanel) that is built from that file. This allows to follow
a pure MVC pattern where the YAML contains nothing but the view, while the Java class is (mostly) the controller.

As an added bonus, the Swing JavaBuilder offers integrated support for data binding (using Beans Binding), input
validation, background task processing (using SwingWorker) and last but not least, an integrated layout management
DSL built-on top of the amazing MigLayout layout manager

In essence, the Swing JavaBuilder is an aggregator of best-of-breed Swing solutions into one common, integrated
toolkit that makes creating Swing user interfaces a breeze

Note: YAML is a file format that is a superset of JSON. We will cover it in more detail in future chapters. It’s very
simple to understand, edit and maintain. It’s main advantage over both XML and JSON is the lack of any opening
or closing tags, since it implements hierarchical data relationships via whitespace indentation (similar to the Python
programming language).

1.2 Preface

In 2007 or so, Sun Microsystems announced their JavaFX project, which aimed to deliver declarative UIs and rich
desktop functionality. Unfortunately, in what I’ve always believed to be a severely misguided decision, this was
accomplished by introducing a totally new language, instead of enhancing the core Java abilities and the existing
Swing UI toolkit.

I decided that there had to be a middle-of-the-road approach that could give Java UI developers the productivity of
declarative UIs without the need to throw out their current language skills out and focus on an unproved and untested
new language (whose features I wasn’t particularly fond of anyway, but that’s a different story).

The JavaBuilders project was a result of this desire. It started off with many weeks of research and evaluation of
different options. This resulted finally in the creation of a generic declarative UI based around the YAML format

1



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

(which has many advantages over the XML or JSON formats) and the integration of many leading open source libraries
(for features such as databinding or input validation) into one integrated solution.

The Swing JavaBuilder is the first production-ready implementation of the JavaBuilder engine, but it’s generic nature
allows it to be configured for other UI toolkits as well. In the future a SWT JavaBuilder is planned (and maybe even
GTK+ and Qt versions as well).

I hope its adoption by you and your team will greatly increase your productivity and ensure a long and healthy future
for Java rich client development.

Jacek Furmankiewicz

JavaBuilders Technical Architect

P.S. Many thanks to our code contributors: Alexandre Navarro, Sébastien Gollion.

1.3 License

All JavaBuilders code is released under the business-friendly Apache 2.0 license. It is free to use in all projects, both
open source and commercial.

Third party libraries

The Swing JavaBuilder depends on a number of well known open-source components, all of which are released under
business-friendly licenses such as BSD, Apache or LGPL. We never link to any open source components released
under viral licenses such as GPL. Nevertheless, please make sure to evaluate each third party license with your legal
team to ensure compliance with its terms.

1.4 Installation

1.4.1 Standard

Start off with downloading the latest Swing JavaBuilder ZIP file distribution off the JavaBuilders.org website.

In the root folder you will find the Swing JavaBuilder jar and in the /lib folder you will find all of its dependencies.
Add all of them to your project’s classpath.

In the /samples folder you will find a sample application that you can use to get a better understanding of how you can
build complex user interfaces using this library.

1.4.2 Maven

If you are using Maven, you can just point to our custom repository:

<repositories>
<repository>

<id>javabuilders</id>
<url>http://javabuilders.googlecode.com/svn/repo</url>

</repository>
</repositories>

Please check the www.javabuilders.org website for the latest version.

At the time of writing, the latest stable version was:

2 Chapter 1. Introduction



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

<dependencies>
<dependency>

<groupId>org.javabuilders</groupId>
<artifactId>javabuilder-swing</artifactId>
<version>1.1.0</version>

</dependency>
</dependencies>

When creating a new Maven project, it is recommended that you change the default setup to allow Java and resource
YAML files to be in the same source code folder, instead of being split across the src/main/java and src/main/resources
folders:

<build>
<resources>

<resource>
<directory>src/main/java</directory>
<includes>

<include>**/*</include>
</includes>
<excludes>

<exclude>**/*.java</exclude>
</excludes>

</resource>
</resources>
<testResources>

<testResource>
<directory>src/test/java</directory>
<includes>

<include>**/*</include>
</includes>
<excludes>

<exclude>**/*.java</exclude>
</excludes>

</testResource>
</testResources>

<plugins>
<plugin>

<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<compilerVersion>1.6</compilerVersion>
<source>1.6</source>
<target>1.6</target>
<includes>

<include>**/*.yml</include>
<include>**/*.java</include>

</includes>
</configuration>

</plugin>

<plugin>
<artifactId>maven-resources-plugin</artifactId>
<configuration>
</configuration>

</plugin>
</plugins>

</build>

1.4. Installation 3



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

4 Chapter 1. Introduction



CHAPTER

TWO

OVERVIEW

2.1 What is JavaBuilders all about?

In short any object that is built using a JavaBuilder consists of two files:

• a YAML text file that provides a declarative definition of the subject, most commonly the user interface. This
would include items such as the controls that get instantiated, their properties, which methods should be called
from event listeners, layout definition, data binding definition, predefined validations on controls or their prop-
erties.

• a Java class with all the actual code that represents the object being built. So for example, in Swing JavaBuilder
the Java class may be a JFrame with all the relevant methods (e.g. save(), close(), validateInput(), as well as
public properties that refer to the data being entered/maintained in the window).

Using a convention over configuration approach inspired by the Apache Wicket web framework, both files reside in
the same package and with the same name, but just with a different file extension, e.g.:

MainApplicationFrame.java
MainApplicationFrame.yml

If you are using an inner class, e.g.:

public class CommonPanels
{

public static class SomePanel
{

SwingBuilder.build(this);
}

}

then you can define a YAML file using the “DeclaringClass.InnerClass.yml” format, e.g.:

CommonPanels.SomePanel.yml

in order to build an instance of the inner class.

Alternatively, you may even specify a build file explicitly by using the class-level @BuildFile annotation, which
accepts a local or absolute file path within the classpath:

Local package file path:

@BuildFile("Common.yml")
public class LocalBuildFilePanel extends JPanel

or:

5



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

Absolute file path:

@BuildFile("/org/javabuilders/test/resources/Common.yml")
public class GlobalBuildFilePanel extends JPanel

2.2 Why would I use this instead of regular coding by hand?

Because you will have to write a lot less code to the same thing if you use a JavaBuilder. This is what it’s all about.

Note: The YAML file contains only a declaration of the interface, which methods (on the Java side) should be fired
when the user pressed a button, data binding instructions, data validation definitions, etc. It has zero code (of any type,
Java, Javascript, etc.) embedded in it. The idea is that 100% of actual code you write is in the Java file and nowhere
else.

2.3 What is YAML?

I discovered YAML while reading about Ruby on Rails. It is used by that web framework as the default file format
for all configuration files. It has a very simple approach to define hierarchical data structures/maps/list, based on
straightforward whitespace indentation. Also, it handles text transparently. There is usually no need to input text in
quotes, you can just type it as is, e.g.:

text: This is the text for my control

The only time you need to escape into quotes is if your text contains YAML-reserved characters such as ”:”, e.g.:

text: "First name:"

2.3.1 Whitespace indentation

Unless you are a Python programmer, the concept of anything that relies on whitespace probably makes you uncom-
fortable. Trust me, it’s actually very simple to get used to it, does not require any particularly specialized development
tools. The main benefit of whitespace indentation is that it automatically handles defining the “end” of an item (hence
there is no need for XML-closing tags or JSON-closing brackets).

2.3.2 Why not XML?

It is simply too verbose. Too much typing. Most of the file seems to be tags and closing tags instead of the content. In
YAML the majority of the file is the actual content (and the whitespace of course).

2.3.3 Why not JSON?

JSON is very concise and the perfect tool for let’s say invoking Ajax requests. However, for maintainable files it
suffers from what I call “closing bracket hell”, especially when dealing with complex object graphs. Every type needs
to be closed with a “}” and every collection needs to be opened and closed with a “[” and “]”. Once you start mixing
the two together you start having horrendous closing statements such as this:

}
}

]
}

6 Chapter 2. Overview



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

]
}

]
}

Scroll to the bottom of this JavaFX code sample to see what I mean: http://jfx.wikia.com/wiki/JFXPresentation

2.3.4 YAML is a superset of JSON

Although YAML relies on whitespace indentation to indicate hierarchy, you can at any point in the document switch
to JSON-style brackets. This allows to keep the file shorter and more concise and should be used on all bottom-level
nodes (i.e. those that have no children).

Pure whitespace YAML example:

JFrame:
name: myFrame
title: My Frame
content:

- JLabel:
name: myLabel2
text: My First Label

- JLabel:
name: myLabel2
text: My Second Label

The same content can be compressed using JSON-style brackets to:

JFrame:
name: myFrame
title: My Frame
content:

- JLabel: {name: myLabel2, text: My First Label}
- JLabel: {name: myLabel2, text: My Second Label}

However, in most cases you will not be coding in either traditional YAML or JSON. We have enhanced the standard
YAML syntax to make it even more compact (more on that in the next sections). In most cases your YAML content
will look like this:

JFrame(name=myFrame,title=My Frame):
- JLabel(name=myLabel2, text=My First Label)
- JLabel(name=myLabel2, text=My Second Label)

This is still valid YAML syntax and our custom YAML pre-processor takes care of “exploding” this compact syntax
to the equivalent “full” YAML content

2.3.5 Tabs in YAML

Warning: Tabs are simply not allowed in YAML, period. You always indent using explicit whitespace. Putting a
tab into a YAML file will cause it to fail to parse

2.3.6 YAML syntax samples

Values:

2.3. What is YAML? 7

http://jfx.wikia.com/wiki/JFXPresentation


Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

text: Some text

Maps:

JFrame:
name: myFrame
title: My Frame

Lists (via the “-” indicator):

content:
- Item1
- Item2 : {somePropertyForItem2: someValueforItem2}

Free-form text with new lines preserved (accomplished with the “|” indicator):

quote: |
To code by hand or not?
There is no question.
You should just be using JavaBuilders.

Will Shakespeare (JavaBuilders early adopter)

2.3.7 Related links

YAML on Wikipedia: http://en.wikipedia.org/wiki/YAML

2.4 Compact YAML syntax

Although the base YAML format is already pretty concise, JavaBuilders adds a custom extension to it that we call
“virtual constructor flow”, otherwise referred to simply as compact YAML. It allows to specify the child properties of
an object in the same line of text as the object definition.

Here’s a pure YAML example:

JFrame:
name: frame
title: My Frame
content:

- JButton:
name: buttonClose
text: Close
onAction: close

- JButton:
name: buttonSave
text: Save
onAction: save

The same content can be entered in much less lines using our compact syntax:

JFrame(name=frame,title=My Frame):
- JButton(name=buttonClose,text=Close,onAction=close)
- JButton(name=buttonSave,text=Save,onAction=save)

Let’s be clear: this is not part of the official YAML standard. This is something specific to JavaBuilders that was added
to make the YAML file even smaller.

Basic concepts

8 Chapter 2. Overview

http://en.wikipedia.org/wiki/YAML


Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

• properties and their values are entered between ( and ) on the same line as the object they refer to

• instead of the default YAML “name: value” format it uses “name=value” but it still uses the default YAML
collection indicators [ and ] (e.g. “list=[listItem1,listItem2]”

• if an object has a collection of object defined directly underneath it, they automatically get moved to the default
“content” node (just as in the example shown above)

Note: All the code samples from this point will use the compact syntax, in order to promote its use.

2.5 Development tools

JavaBuilders requires just any decent Java IDE with a YAML editor. Remember to select fixed width font (e.g. Courier
New, Monospaced ) for the editor, otherwise you will not be able to line up the spacing correctly in the file.

2.5.1 Eclipse

Eclipse YAML Editor: http://code.google.com/p/yamleditor/

2.5.2 NetBeans

As of NetBeans 6.5 a YAML editor is included in the core distribution.

2.5.3 IntelliJ IDEA

A YAML editor is included in the core distribution.

2.6 Benefits

2.6.1 What are the benefits compared to coding by hand?

You have to write a lot less code. JavaBuilders introduces dynamic language-level productivity (think Ruby/Groovy)
to Java. See this typical Java Swing example:

ResourceBundle bundle = ResourceBundle.getBundle("Resources");
JButton button = new JButton();
button.setName("okButton");
button.setText(bundle.getString("button.ok"));
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
//execute the save method
save();

}
});

The equivalent compact YAML content would be just:

JButton(name=okButton,text=button.ok,onAction=save)

and all you need to build this Swing Java class from this YAML file is this single line of code somewhere in your
constructor:

2.5. Development tools 9

http://code.google.com/p/yamleditor/


Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

SwingJavaBuilder.build(this);

The equivalent code for any other UI toolkit (e.g. SWTJavaBuilder) would be just as compact.

2.6.2 What are the benefits compared to using GUI Builders, such as NetBeans
Matisse?

Mostly maintainability. For smaller examples it’s probably not much of a difference (since so much of the code is
generated for you by Matisse), but once you get into larger, more complex forms it becomes harder to maintain them
in a GUI builder, especially if you have to move the layout around a lot. In JavaBuilders, it’s just a matter of changing
a few lines of text in a YAML file.

Also, e can add “custom” properties to existing objects, so we can enhance APIs or make them easier, e.g.:

JFrame(size=800x400)

The Swing JFrame class does not have a property called “size”. But JavaBuilders can support virtual properties
which trigger some Java code that will magically call the proper equivalent methods, in order to achieve the same
functionality in much less code.

Last, but not least, JavaBuilders provide support for functionality not provided by GUI builders, such as integrated
input validators or executing cancellable long running methods on a background thread.

2.7 Drawbacks

Nothing is perfect, so JavaBuilders have weak points too.

• Lose some of the static, compile-time safety: since you are defining all the layouts/event wiring in a YAML text
file, some of the referenced objects may have a different name that their corresponding equivalents in the Java
file, especially if using refactoring. This can be overcome with the @Alias annotation, which hardcodes a link
between a Java-side object and its definition in the YAML file.

• No code completion (at least not yet). YAML is just a pure text file. You won’t know what the known properties
are for any particular object type unless you know them already. But in most cases it’s the basic ones: name,
text, onAction, onClicked, etc.

• You have to get acquainted with YAML...sorry, can’t help you there. Sometimes we just need to learn new
things. The bottom line though is that all your code stays in Java, YAML is just used for declarative UI building.

On the upside, UI components built with JavaBuilders are easily unit testable. You just need to do:

new MyComponent()

in your unit test, that’s all. When an object is built, the JavaBuilder automatically validates that not only the properties
are defined correctly, but also all the event listeners point to actual existing methods in the Java class. If not, a
BuildException will be thrown right away.

10 Chapter 2. Overview



CHAPTER

THREE

SWING JAVABUILDER IN 60 SECONDS
OR LESS

Here’s a sample of what you can do with the Swing JavaBuilder in 60 seconds or less. Hopefully, it will make it clear
as to what the productivity benefits are.

To show off its abilities we will create a simple app that prompts for a person’s data and simulates saving it to a
database via a long running task on a background thread.

1. Download the latest Swing JavaBuilder ZIP from http://javabuilders.org

2. In Eclipse, create a new Java project called “PersonApp” and create a default package “person.app”

3. Add the Swing JavaBuilder jar and all of its dependencies (from the “/lib” folder) to the project’s build path

4. Create the person.app.Person class that will represent our model:

package person.app;

import java.text.MessageFormat;

public class Person {
private String firstName;
private String lastName;
private String emailAddress;
/**
* @return the firstName

*/
public String getFirstName() {

return firstName;
}
/**
* @param firstName the firstName to set

*/
public void setFirstName(String firstName) {

this.firstName = firstName;
}
/**
* @return the lastName

*/
public String getLastName() {

return lastName;
}
/**
* @param lastName the lastName to set

*/

11

http://javabuilders.org


Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

public void setLastName(String lastName) {
this.lastName = lastName;

}
/**
* @return the emailAddress

*/
public String getEmailAddress() {

return emailAddress;
}
/**
* @param emailAddress the emailAddress to set

*/
public void setEmailAddress(String emailAddress) {

this.emailAddress = emailAddress;
}
@Override
public String toString() {

return MessageFormat.format(
"{0} {1} : {2}", getFirstName(),
getLastName(),
getEmailAddress());

}
}

5. Create a PersonApp.properties file in the root package with the internationalized resources:

button.save=Save
button.cancel=Cancel
label.firstName=First Name:
label.lastName=Last Name:
label.email=Email
frame.title=Enter Person Data

6. Create the view YAML file PersonApp.yml in the person.app package:

JFrame(name=frame, title=frame.title, size=packed, defaultCloseOperation=exitOnClose):
- JButton(name=save, text=button.save, onAction=[$validate,save,done])
- JButton(name=cancel, text=button.cancel, onAction=[$confirm,cancel])
- MigLayout: |

[pref] [grow,100] [pref] [grow,100]
"label.firstName" txtFirstName "label.lastName" txtLastName
"label.email" txtEmail+*
>save+*=1,cancel=1

bind:
- txtFirstName.text: person.firstName
- txtLastName.text: person.lastName
- txtEmail.text: person.emailAddress

validate:
- txtFirstName.text: {mandatory: true, label: label.firstName}
- txtLastName.text: {mandatory: true, label: label.lastName}
- txtEmail.text: {mandatory: true, emailAddress: true, label: label.email}

7. Create the controller Java class person.app.PersonApp (same package where the YAML file is):

package person.app;

import javax.swing.JFrame;
import javax.swing.JOptionPane;
import javax.swing.SwingUtilities;

12 Chapter 3. Swing JavaBuilder in 60 seconds or less



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

import javax.swing.UIManager;

import org.javabuilders.BuildResult;
import org.javabuilders.annotations.DoInBackground;
import org.javabuilders.event.BackgroundEvent;
import org.javabuilders.event.CancelStatus;
import org.javabuilders.swing.SwingJavaBuilder;

@SuppressWarnings({"serial","unused"})
public class PersonApp extends JFrame {

private Person person;
private BuildResult result;

public PersonApp() {
person = new Person();
person.setFirstName("John");
person.setLastName("Smith");
result = SwingJavaBuilder.build(this);

}

public Person getPerson() {
return person;

}

private void cancel() {
setVisible(false);

}

@DoInBackground(cancelable = true,
indeterminateProgress = false, progressStart = 1,
progressEnd = 100)

private void save(BackgroundEvent evt) {
// simulate a long running save to a database
for (int i = 0; i < 100; i++) {

// progress indicator
evt.setProgressValue(i + 1);
evt.setProgressMessage("" + i + "% done...");
// check if cancel was requested
if (evt.getCancelStatus() != CancelStatus.REQUESTED) {

// sleep
try {

Thread.sleep(100);
} catch (InterruptedException e) {
}

} else {
// cancel requested, let’s abort
evt.setCancelStatus(CancelStatus.COMPLETED);
break;

}
}

}

// runs after successful save
private void done() {

JOptionPane.showMessageDialog(this, "Person data: " + person.toString());
}

13



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

/**
* @param args

*/
public static void main(String[] args) {

SwingUtilities.invokeLater(new Runnable() {
public void run() {

// activate internationalization
SwingJavaBuilder.getConfig().addResourceBundle("PersonApp");
try {

UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
new PersonApp().setVisible(true);

} catch (Exception e) {
e.printStackTrace();

}
}

});
}

}

8. Run the PersonApp.main() method. You should see an input dialog like this appear:

Note: Notice that the default person name is propagated from the Java code to the UI via data binding.

All the controls are created and the layout is executed without the need for an IDE-specific GUI builder. Also, many
of the controls were auto-created without being explicitly defined. Putting a resource name within a String literal
automatically created JLabel instances, while defining a field with a txt prefix automatically created JTextField
instances. All without any additional YAML or Java code.

The resource keys entered in quotes in the layout section have been used to automatically create JLabel(s) and populate
their text with the value of the resource key.

9. Enter an invalid email address for the person and press Save:

14 Chapter 3. Swing JavaBuilder in 60 seconds or less



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

The validation logic (invoked via “$validate”) executed and perform basic input validation.

10. Enter a valid email address:

11. Press “Save”. The save() Java method is executed (which simulates a long running database save with a progress
bar) and since it is annotated with the @DoInBackground annotation it will automatically run on a background
thread using the SwingWorker library.

12. After the save logic executes, the done() Java method is executed to inform the user the save was success-
ful. Notice that the email address we entered was automatically propagated back to the underlying bean using
databinding.

15



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

13. Press ‘Cancel’ to close the window. Since you specified “$confirm” in the action handler, it will automatically
prompt the user to confirm the action. If they select “Yes”, the cancel() Java method will be called and the
window will close.

Summary

• 16 lines of YAML

• 3 simple Java methods to handle save(), done() and cancel() (and without any of the logic to create and layout
the controls)

That is all we needed to create a fully functional application with control creation and layout, data input validation and
executing long running business methods on a background thread via SwingWorker. Not to mention it’s fully localized
with all the labels being automatically fetched from a ResourceBundle

16 Chapter 3. Swing JavaBuilder in 60 seconds or less



CHAPTER

FOUR

CORE FEATURES

4.1 Obtaining references to created components

Convention over configuration

In most cases, we use a straightforward convention-over-configuration approach. If you define an object in YAML and
then define a Java instance instance variable with the same name and of compatible type, then JavaBuilders will set
the reference on it automatically (even if it is a private variable, it does not need to be public).

Simple example:

MyFrame.yml:

JFrame:
- JButton(name=okButton,text=OK,onAction=save)

MyFrame.java:

public class MyFrame extends JFrame {
//this object’s reference will be set automatically
private JButton okButton;
private BuildResult result = SwingJavaBuilder.build(this)
public MyFrame(){

//reference is set! NullPointerException will not occur
okButton.setText("New text");

}
private void save() {

//execute some business logic...
}

}

Obtaining references manually

You can also just fetch the object reference manually from the returned BuildResult object:

public MyFrame() {
JButton okButton = (JButton)result.get("okButton");

}

But the convention over configuration approach is much preferred.

17



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

4.2 Hooking up event listeners to Java methods

4.2.1 Overview

The standard approach is to provide a standard “onEvent” property (e.g. “onAction”, “onClicked”, “onDou-
bleClicked”) and then pass it a single method name or a collection of method names.

Single method:

JButton(text=OK, onAction=save)

Multiple methods to be executed in sequence:

JButton(text=OK, onAction=[validateInput,save,close])

If any of the methods return a boolean false , then the other methods get aborted and will not be called. Simple
convention over configuration approach

4.2.2 Mapping to methods on the Java side

When you specify a method name (e.g. “save”) in the YAML file, it will attempt to execute the corresponding method
in the Java class. Different signatures of the method are supported, in order of preference:

• method(calling object type or its superclass, event specific class):

private void save(JButton button, ActionEvent event) {}

• method(event specific class):

private void save(ActionEvent event) {}

• method(calling object type or its superclass):

private void save(JButton button) {}

• method():

private void save() {}

Enter whichever one you want and JavaBuilders will find it and execute it. If it finds multiple ones, it will execute the
first one it finds based on the preference above. If none are found, a BuildException will be thrown right away during
build time. So, you do not have to actually test your event listener logic by manually clicking on the button or menu
item, the validation occurs right away as part of the build process. This simplifies unit testing and limits the risk of
lost type safety.

4.3 Databinding

Binding is defined by adding a “bind” root node after all the controls have been defined. Unlike in most other lan-
guages, the binding is not defined at the property level, but is a stand-alone node of its own. This is done to enforce
separation of concerns and ensure clarity. You can see all your data binding in one place, all together.

Sample (assume we have a backing JFrame JavaBean with two public properties “lastName” and “firstName”):

18 Chapter 4. Core Features



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

JFrame(name=frame,title=Hallo):
- JTextField(name=firstNameField)
- JTextField(name=lastNameField)
- JButton(name=saveButton, text=Save)
- layout: |

[] [grow]
>"First name:" firstNameField
>"Last name:" lastNameField
>saveButton+*

bind:
- this.title : "Hello, ${firstNameField.text}"
- this.firstName : firstNameField.text

Note that you can bind either using an EL expression or directly to an objectName.propertyName.

4.3.1 Databinding requirements

In order for the binding to work between public properties, they must fire a “property change” event on the “set” and
the parent class must provide the “addPropertyChangeListener” and “removePropertyChangeListener” methods. This
is all part of the standard Beans Binding requirements. A good example can be found in the Bound Properties Java
tutorial: http://java.sun.com/docs/books/tutorial/javabeans/properties/bound.html

4.3.2 Supported features

In order to integrate as best as possible with each UI toolkit, JavaBuilders rely on the best toolkit-specific library for
databinding. This means that the Swing JavaBuilder uses Beans Binding (JSR 295), while the SWT JavaBuilder uses
JFace DataBinding.

Not all databinding engines provide the same functionality. For example, Beans Binding does provide support for EL
expressions in data binding (hence you can use them for the Swing JavaBuilder), but the JFace Databinding engine
does not (and therefore they are not supported for the SWT JavaBuilder).

4.4 Input validation

Similar to data binding, input validation is configured via a separate root level node called validate:

JFrame(name=frame,title=Binding Frame,size=packed):
- JTextField(name=fName)
- JTextField(name=lName)
- JButton(name=ok, text=OK, onAction=[$validate,save,cancel])
- JButton(name=cancel, text=Cancel, onAction=cancel)
- MigLayout: |

[] [grow,200px]
>"First name:" fName
>:Last name:" lName
>ok+*=1,cancel=1 [grow,bottom]

bind:
- firstName: fName.text
- lastName: lName.text

validate:
- fName.text: {label: First Name, mandatory: true, minLength : 5}

4.4. Input validation 19

http://java.sun.com/docs/books/tutorial/javabeans/properties/bound.html


Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

4.4.1 Invoking input validation

If you want to do in from the YAML file, just put $validate as the method name in any event handler, e.g.:

JButton(name=saveBtn,text=Save,onAction=[$validate,save,close])

If you want to do it from the Java then you just need to call the validate() method on the BuildResult object that was
returned:

private BuildResult result = SwingJavaBuilder.build(this);

//validate user input
private boolean validate() {

return result.validate();
}

4.4.2 Field label for error messages

The “label” property is used to define the name of the field that will be using in any error messages. It is
localizable, so you can sent it a resource key instead, e.g.:

validate:
- fName.text: {label: label.firstName, mandatory: true, minLength : 5}

4.4.3 Validator routines

The following validator routines are currently available:

Validation
type

Example Comment

mandatory mandatory:true
minLength minLength: 5
maxLength maxLength : 5
regex regex: “[a-zA-Z0-9]+” Uses default validation

message
regex: “[a-zA-Z0-9]+”, regexMessage: “’‘{0}” must be a number
or letter”

Uses custom error message

minValue minValue: 5
maxValue maxValue: 50
dateFormat dateFormat: yyyy/mm/dd
emailAddress emailAddress: true

Full example:

validate:
- mandatory.text: {label: Mandatory Field, mandatory: true}
- date.text: {label: Date Field, dateFormat: "yyyy/mm/dd"}
- email.text: {label: E-Mail, email: true}
- minmax.text: {label: Min/Max Length, minLength: 5, maxLength: 10}
- regex.text: {label: Regex, regex: "[a-zA-Z0-9]+"}
- regex2.text: {label: Regex, regex: "[a-zA-Z0-9]+",

regexMessage: "’’{0}’’ must be a number or letter"}
- long.text: {label: Min/Max Long, minValue: 5, maxValue: 50, mandatory: true}

20 Chapter 4. Core Features



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

4.4.4 Adding custom validators

The default validator routines not powerful enough for you? You can easily add custom validation logic
to be executed together with the built-in routines via Java-side code:

result.getValidators().add(new IValidator() {
public void validate(Object value, ValidationMessageList list) {

if (!isValid) {
list.add(

new ValidationMessage("Input is not valid!"));
}

}
});

4.5 Executing long running methods on a background thread

A common issue in most UI toolkits is that the application locks up if a long running process is running on the EDT
(Event Dispatch Thread). In this case, the recommended solution is to execute it on a background thread and if
possible, provide some sort of progress indicator to the user letting them know about the current status of this process
(e.g. saving large amounts of data to a database).

4.5.1 Method Annotation

In JavaBuilders, this is accomplished by simply annotating the long running method with a @DoInBackground anno-
tation (which provides some attributes that can customize how the long running process is handled).:

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface DoInBackground {

/**
* @return Progress message

*/
String progressMessage() default "label.processing";
/**
* @return If background task is cancelable or not

*/
boolean cancelable() default false;
/**
* @return Default start value for progress bar

*/
int progressStart() default 1;
/**
* @return Default end value for progress bar

*/
int progressEnd() default 100;
/**
* @return Current progress value

*/
int progressValue() default 1;
/**
* @return Indicates if task should block UI with a popup or not

*/
boolean blocking() default true;
/**
* @return Indicates to show indeterminate progress indicator. Overrides the progress

4.5. Executing long running methods on a background thread 21



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

start/end/value if set to true

*/
boolean indeterminateProgress() default true;

}

Any method that is annotated as such must implement a signature that accepts an object of type BackgroundEvent ,
which allows the background method to communicate with the UI’s progress indicator and even cancel itself, if the
user requests it, e.g.:

@DoInBackground(cancelable=true, progressStart=1, progressEnd=100,
progressValue=1, indeterminateProgress=false)

private void save(BackgroundEvent evt) {
System.out.println("SAVE...");
for(int i = 0; i < 100; i++) {

if (evt.getCancelStatus() != CancelStatus.REQUESTED) {
try {

Thread.currentThread().sleep(100);
evt.setProgressValue(i + 1);
evt.setProgressMessage(String.format("Processing %s of %s...",
evt.getProgressValue(), evt.getProgressEnd()));

} catch (InterruptedException e) {}
} else {

evt.setCancelStatus(CancelStatus.PROCESSING);
System.out.println("Cancelling...");
evt.setCancelStatus(CancelStatus.COMPLETED);
break;

}
}
System.out.println("SAVE END...");

}

4.6 Executing multiple methods together

A typical scenario in an input dialog that occurs when a user presses the Save button is:

1. validate input

2. save the data (this can take a long time)

3. close the window

The way to handle this is to have the button execute multiple methods in sequence, within
[method1,method2,method3] brackets, e.g.:

JButton(text=Save,onAction=[$validate,save,close])

On the Java side, the long running method is annotated as such:

@DoInBackground(indeterminateProgress=true)
private void save() { //long running process }

private void close() {
setVisible(false);
dispose();

}

The methods after the long running method (i.e. “close” in this example), will only execute after the long running
method has finished, they will not run in parallel, even though they are on different threads. Hence, the sequence of

22 Chapter 4. Core Features



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

events is preserved.

4.7 Custom progress indicators for long running methods

The default handler will pop up a blocking window with a progress dialog (and an optional “Cancel” button) only for
methods that are flagged as blocking=true. For non-blocking methods, it does nothing in terms of the UI.

However, non-blocking background methods may still benefit from showing their progress status in a custom progress
bar (or using some progress API, such as Eclipse RCP Task API or the equivalent in NetBeans RCP).

In order to make this possible, instances of BackgroundEventListener may be added.:

public interface BackgroundEventListener extends EventListener {

/**
* Fired before a background task starts

* @param evt

*/
public void backgroundTaskStarted(BuildResult r, BackgroundEvent evt);

/**
* Fired after a background task ends

* @param evt Event object

*/
public void backgroundTaskEnded(BuildResult r, BackgroundEvent evt);

}

These can be added either at the global level (i.e. for all components) on the builder config, e.g.:

SwingJavaBuilder.getConfig().addBackgroundEventListener(new BackgroundEventListener() {
@Override
public void backgroundTaskStarted(BuildResult r, BackgroundEvent evt) {

//notify common progress indicator about a new background task
}

@Override
public void backgroundTaskEnded(BuildResult r, BackgroundEvent evt) {

//notify common progress indicator that a background task has ended
}

});

or can be local (i.e. just for the current component):

BuildResult r = SwingJavaBuilder.build(this)
r.addBackgroundEventListener(new BackgroundEventListener() {

@Override
public void backgroundTaskStarted(BuildResult r, BackgroundEvent evt) {

//notify some local progress bar that task is starting
}

@Override
public void backgroundTaskEnded(BuildResult r, BackgroundEvent evt) {

//notify some local progress bar that task is ending
}

});

4.7. Custom progress indicators for long running methods 23



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

The BackgroundEvent object itself includes full PropertyChangeSupport, so you can add listeners to monitor its
properties and updated the progress bar min/max/value/message accordingly.

4.8 Domain-specific Implementations

In Swing JavaBuilder, long running methods are handled by using the standard SwingWorker library. A Swing progress
dialog will popup up informing the user that a process is running. If the method flagged itself as cancelable, the Cancel
button on the progress dialog will be enabled, allowing the user to cancel the task if it runs for too long.

For the SWT JavaBuilder the plan is to support something similar or alternatively plug into the JFace Progress/Tasks
API.

As you can see, JavaBuilders does not have a “one size fits all” approach and for each toolkit we plan to use the best
option available on that specific platform.

4.9 Internationalization

Internationalizaton support in any Builder is provided at two levels: global and class-level. If any resource bundle is
present (either at the global or class level), the internationalization support will automatically get activated.

4.9.1 Global Resource Bundles

In your main() just add the list of global application resource bundles to the configuration of your builder, e.g.:

SwingJavaBuilder.getConfig().addResourceBundle("Resources");

or:

ResourceBundle myResourceBundle = ....
SwingJavaBuilder.getConfig().addResourceBundle(myResourceBundle);

4.9.2 Class-level Resource Bundles

If you need to have additional class-level resource bundles, just pass them in during the buld request:

private ResourceBundle bundle = ResourceBundle.getBundle("MyClassBundle");
private BuildResult result = SwingJavaBuilder.build(this, bundle);

The builder will look at the class-level bundles first for a key and if not found, will search through the global ones.

4.9.3 Usage

Once you register a resource bundle, you can pass a resource name directly to any of the properties that have been
flagged as localizable, e.g.

YAML:

JButton(name=okButton, text=button.ok)

Properties file:

24 Chapter 4. Core Features



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

button.ok=OK

4.9.4 Built-in Resources

The library comes with its own built-in resources for common dialogs and messages. They are:

button.cancel=Cancel

label.processing=Processing...
label.stepXofY=Step {0} of {1}

message.cancelConfirm=Are you sure you want to cancel?

message.error.dateFormat="{0}" must be a valid date in "{1}" format.
message.error.emailAddress="{0}" must be a valid email address.
message.error.maxValue="{0}" cannot be more than {1}.
message.error.minValue="{0}" cannot be less than {1}.
message.error.mandatory="{0}" is a required field.
message.error.maxLength="{0}" cannot be more than {1} characters long.
message.error.minLength="{0}" must be at least {1} characters long.
message.error.numeric="{0}" must be a valid numeric value.
message.error.regex="{0}" entry is not in valid format.
message.error.int="{0}" is not a valid integer value.
message.error.long="{0}" is not a valid number.
message.error.short="{0}" is not a valid short value.
message.error.byte="{0}" is not a valid byte value.
message.error.double="{0}" is not a valid decimal value.
message.error.float="{0}" is not a valid decimal (float) value.

question.areYouSure=Are you sure?

title.cancelTask=Cancel Task
title.validationError=Validation Error
title.validationErrors=Validation Errors
title.confirmation=Confirmation

Default translations in French and Italian are provided as well. If you want to override any of these messages or
provide an additional locale translation, you just have to override any of these keys in any of the resource bundles that
you have registered.

The library will look for these keys in your bundles first before falling back on the built-in one.

4.9.5 Marking invalid resource keys

By default, resource keys that have not been found will be shown as is (i.e. the resource key will be shown as the text)
and an INFO message will be logged as well, e.g.:

278 [main] INFO org.javabuilders.BuildResult -
Unable to find value in any resource bundle for key: *button.doThis*

You can have them marked explicitly with “#” (e.g. “#button.doThis#”) to further visually indicate that they are mising
by calling the setMarkInvalidResourceBundleKeys(boolean) method, e.g.:

SwingJavaBuilder.getConfig().setMarkInvalidResourceBundleKeys(true);

4.9. Internationalization 25



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

4.10 Enum property values

When building an object, if the specified property type is an Enum of any sort, the builder will automatically allow
you to enter it just using the enum constant, without the actual enum name prefix.

4.10.1 Enums defined like constant Integers

If your enum is defined using this type of naming convention:

//enum defined like static int constants
enum StartPosition{ CENTER_IN_SCREEN, CENTER_IN_PARENT, MANUAL }

In YAML, you can do then either:

JXFrame(startPosition=CENTER_IN_PARENT)

or the Java camel-case named equivalent:

JXFrame(startPosition=centerInParent)

4.10.2 Enums defined using Pascal case

If your enum is defined instead using a Pascal case syntax, e.g.:

//enum defined like static int constants
enum StartPosition{ CenterInScreen, CenterInParent, Manual}

then you can still do either the original constant value or the camel-case named equivalent:

JXFrame(startPosition=CenterInParent)

or:

JXFrame(startPosition=centerInParent)

4.10.3 Static int constant property values

Similar to the way Enum values are handled, the default behaviour is that when a String value is passed to an int
property, the builder will attempt to find a corresponding final static int value on the Java class and use that. Both
camel-case values and actual static constant names can be used, e.g.:

JFrame(defaultCloseOperation=EXIT_ON_CLOSE)

or:

JFrame(defaultCloseOperation=exitOnClose)

4.11 Using custom components

Sooner or later you will want to create a custom component instance from within your YAML file. However, the
current builder does not know how to map your custom component name (e.g. “MyCustomPanel”) to an actual Java
class. In order to let it know all you have to do is define an instance variable with the same type in your Java-side code
and it will automatically find the corresponding class definition that way, e.g.

26 Chapter 4. Core Features



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

YAML:

JFrame(title=frame.title,state=max,defaultCloseOperation=exitOnClose):
- ComponentsPanel(name=componentsPanel,tabTitle=tab.components)
- BorderPanel(name=borderPanel,tabTitle=tab.borders)
- CardLayoutPanel(name=cardLayoutPanel,tabTitle=tab.cardLayout)
- FlowLayoutPanel(name=flowLayoutPanel,tabTitle=tab.flowLayout)
- MigLayoutPanel1(name=migLayoutPanel1,tabTitle=tab.migLayout1)

Java:

private ComponentsPanel componentsPanel;
private FlowLayoutPanel flowLayoutPanel;
private CardLayoutPanel cardLayoutPanel;
private MigLayoutPanel1 migLayoutPanel1;
private BorderPanel borderPanel;

4.12 Custom global commands

Custom global commands allows you to basically define a named reusable piece of code that you can refer to anywhere
in your YAML file’s event handlers.

Custom commands are prefixed with “$” and the system ships with two pre-defined global commands:

• $validate : triggers the input validation logic, if defined:

JButton(name=okButton, text=OK, onAction=[$validate,save,finishSave])

• $confim : displays a standard “Are you sure?” confirmation dialog that can be invoked before any destructive
action:

JButton(name=deleteButton, text=Delete, onAction=[$confirm,delete])

4.12.1 Adding your own custom commands

You need to implement the ICustomCommand interface and add it to your builder’s configuration:

SwingJavaBuilder.getConfig().addCustomCommand("$confirm", new ICustomCommand<Boolean>() {
public Boolean process(BuildResult result, Object source) {

Component c = null;
if (result.getCaller() instanceof Component) {

c = (Component) result.getCaller();
}
int value = JOptionPane.showConfirmDialog(c,

Builder.getResourceBundle().getString("question.areYouSure"),
Builder.getResourceBundle().getString("title.confirmation"),
JOptionPane.YES_NO_OPTION, JOptionPane.QUESTION_MESSAGE);

if (value == JOptionPane.YES_OPTION) {
return true;

} else {
return false;

}
}

});

4.12. Custom global commands 27



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

4.13 Build events

If you need to hook up some custom pre- or post-processing every time a build is executed (e.g. to integrate a 3rd
party library like JavaCSS , you can add a listener to the builder), preferably in your main() method , e.g.:

//event listeners
SwingJavaBuilder.getConfig().addBuildListener(new BuildAdapter() {

@Override
public void buildStarted(BuildEvent evt) {

System.out.println(("Build started from caller: " + evt.getSource()));
}
@Override
public void buildEnded(BuildEvent evt) {

System.out.println(("Build ended for root object: " +
evt.getResult().getRoot()));

}
});

4.13.1 Processing the proper object

In the buildStarted event you should access evt.getSource(), which refers to the caller that initiated the build
(i.e. your Java class).

However, in the buildEnded event it is better to access evt.getResult().getRoot(), which is the root object
that was created from the build file.

The two are not necessarily the same (e.g. in order to create a JPanel from a YAML file your Java-side class does
not have to extend JPanel at all, it is optional). This is useful in toolkits like SWT that do not allow you to extend
particular component types.

4.14 Hot deployment of UI components

In order to further maximize developer productivity, all the JavaBuilders come with support for dynamically updating
components while running the application. This means you can edit your YAML files and preview them in your app
by just re-opening the panel/dialog being edited, without the need to restart the whole application.

In order to do this you need to pass the "javabuilders.dev.src" property to the Java VM on program startup
and have it point to the relative path where your source code is vs. the compiled .class files.

In Eclipse, where the classes are in “bin” and the source code usually in “src” you need to pass this VM argument in
your run configuration:

-Djavabuilders.dev.src=../src

That’s it! Now the builder will read the YAML files from the source folder, instead of the bin folder, meaning you
can keep editing them while the app is running and immediately see the changes as soon as you re-open the current
component you were working on.

4.15 Logging via SLF4J

The SLF4J Logging Facade is used for all logging. You will need to add the SLF4J implementation for your logging
package (Log4J, JDK, Commons Logging, etc.) to your application classpath.

28 Chapter 4. Core Features



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

For more information, read the SLF4J manual: http://www.slf4j.org/manual.html

4.15. Logging via SLF4J 29

http://www.slf4j.org/manual.html


Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

30 Chapter 4. Core Features



CHAPTER

FIVE

SWING FEATURES

Now that we’ve seen the core JavaBuilders’s features, let’s explore what the Swing JavaBuilder provides on top of that
for building actual Swing user interfaces.

5.1 Overview

The Swing JavaBuilder is an instance of the JavaBuilders engine, pre-configured for use with the Swing UI toolkit. It
is represented by the main class org.javabuilders.swing.SwingJavaBuilder and in most typical cases
that is the only class you will be dealing with.:

public class MyFrame extends JFrame {
private BuildResult result = SwingJavaBuilder.build(this);
public MyFrame() {}

}

The returned BuildResult obtain contains a reference to the various objects that were created during the build
process, but it is often not necessary to interact with it at all (unless you are doing something more complex or
custom).

5.2 Component properties

In most cases there is a simple one-to-one mapping between the properties of Swing components and how they are set
in the YAML file, e.g. a JTextField.text property in YAML is simply:

JTextField(text=Some Text)

However, some components have been enhanced in the Swing JavaBuilder to make instantiating and using them even
easier.

5.3 Actions and menus

Creating actions and menus for any application is one of the most cumbersome and time consuming tasks in Swing
development. Fortunately enough, the Swing JavaBuilder delivers a whole slew of productivity enhancements in this
area that makes creating menus a breeze.

31



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

5.3.1 Text, accelerators and mnemonics

Whether you are dealing with an Action or a JMenuItem , you can handle defining all these 3 properties in one simple
text value, where the mnemonic is indicated via a “&” prefix and the accelerator is typed in manually after a “t” tab
indicator (similar to the way it is done in SWT), e.g.:

JMenuItem(text="&Save\tCtrl+S")

The sample above sets the text to “Save”, the mnemonic on the “S” character and the accelerator to “Ctrl+S”.

Valid accelerators are:

1. Ctrl

2. Alt

3. Shift

4. Meta

followed by the appropriate character. They can be mixed together, e.g. “Ctrl+Alt+N”. Due to the embedded \t,
such menu definitions have to be escaped into quoted text, as per the example above.

5.3.2 JButton accelerators

By default Swing does not support defining accelerators on JButton(s). However, we worked around it to make that
possible. You can use the same format as for Action(s) or JMenuItem(s). This will only be active if the window (or
tab) that contains the button has current focus.

The accelerator value will be shown in the JButton tooltip text (unless it’s already used for something else).

5.3.3 Actions

The regular Swing Action API has been modified separately to separate the concept of “name” vs “text” (which are the
same in the Action API, but we treat them separately so that the text can be easily internationalized, without affecting
the name). It provides name, text, toolTipText, icon properties and the name of the Java method to be invoked is
defined in the onAction handler.

YAML:

Action(name=newAction, text=menu.file.new, icon=images/document-new.png, onAction=onFileNew)

Java:

private void onFileNew() {
System.out.print("onFileNew was invoked!");

}

Any descendant of AbstractButton (such as JMenuItem or JButton can then refer to it in its action property, e.g.:

JFrame(title=frame.title, state=max, defaultCloseOperation=exitOnClose):
- Action(name=newAction, text=menu.file.new, toolTipText=menu.file.new.tooltip, icon=images/document-new.png, onAction=onFileNew)
- Action(name=openAction, text=menu.file.open, toolTipText=menu.file.open.tooltip, icon=images/document-open.png, onAction=onFileOpen)
- Action(name=saveAction, text=menu.file.save, toolTipText=menu.file.save.tooltip, icon=images/document-save.png, onAction=onSave)
- Action(name=exitAction, text=menu.file.exit, icon=images/process-stop.png, onAction=[$confirm,exit])
- Action(name=option1Action, text=menu.option1, onAction=option1)
- Action(name=helpAboutAction,text=menu.help.about,onAction=onHelpAbout)
- JMenuBar:

- JMenu(name=fileMenu,text=menu.file):

32 Chapter 5. Swing Features



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

- JMenuItem(action=newAction)
- JMenuItem(action=openAction)
- JSeparator()
- JMenuItem(action=saveAction)
- JSeparator()
- JMenuItem(action=exitAction)

- JMenu(name=optionsMenu, text=menu.options):
- JRadioButtonMenuItem(name=radio1Menu, action=option1Action)
- JRadioButtonMenuItem(name=radio2Menu, text=menu.option2)
- JRadioButtonMenuItem(name=radio3Menu, text=menu.option3)
- ButtonGroup: [radio1Menu, radio2Menu, radio3Menu]
- JSeparator()
- JCheckBoxMenuItem(text=menu.option1, onAction=option1)
- JCheckBoxMenuItem(text=menu.option2)
- JCheckBoxMenuItem(text=menu.option3)

- JMenu(name=helpMenu,text=menu.help):
- JMenuItem(action=helpAboutAction)

5.3.4 JMenuBar and JMenuItem

If you do not wish to use Actions, you can create menus by directly specifying the relevant properties on JMenuBar
and JMenuItem instances:

JFrame(title=frame.title, iconImage=images/system-lock-screen.png):
- JMenuBar:

- JMenu(name=fileMenu,text=menu.file):
- JMenuItem(name=newMenu, text=menu.file.new, onAction=onFileNew)
- JMenuItem(name=openMenu, text=menu.file.open, onAction=onFileOpen)
- JSeparator()
- JMenuItem(name=exitMenu, text=menu.file.exit, onAction=exit)

- JMenu(name=optionsMenu, text=menu.options):
- JRadioButtonMenuItem(name=radio1Menu, text=menu.option1, onAction=option1)
- JRadioButtonMenuItem(name=radio2Menu, text=menu.option2)
- JRadioButtonMenuItem(name=radio3Menu, text=menu.option3)
- ButtonGroup: [radio1Menu, radio2Menu, radio3Menu]
- JSeparator()
- JCheckBoxMenuItem(text=menu.option1, onAction=option1)
- JCheckBoxMenuItem(text=menu.option2)
- JCheckBoxMenuItem(text=menu.option3)

- JMenu(name=helpMenu,text=menu.help):
- JMenuItem(name=helpAboutMenu,text=menu.help.about,onAction=onHelpAbout)

However, we recommend you always use Actions instead.

5.3.5 JPopupMenu

Popup menus can easily be added to any Swing component by simply specifying the “popupMenu” property to point
to an existing JPopupMenu instance by name. The Swing JavaBuilder takes care of all the mouse event wiring to
popup the menu upon right-click.

With actions:

- Action(name=copyAction, text=menu.edit.copy, onAction=copy)
- Action(name=pasteAction, text=menu.edit.paste, onAction=paste)
- JPopupMenu(name=popup):

- JMenuItem(action=copyAction)

5.3. Actions and menus 33



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

- JMenuItem(action=pasteAction)
- JTabbedPane(name=tabs, onChange=onTabChanged):

- JPanel(name=frameYamlSource, tabTitle=tab.frameYamlSource):
- JScrollPane(name=scroll1):

JTextArea(name=frameSourceArea, popupMenu=popup)

Without actions:

- JPopupMenu(name=popup):
- JMenuItem(name=popupCopy, text=Copy, onAction=copy)
- JMenuItem(name=popupPaste, text=Paste, onAction=paste)

- JTabbedPane(name=tabs, onChange=onTabChanged):
- JPanel(name=frameYamlSource, tabTitle=tab.frameYamlSource):

- JScrollPane(name=scroll1):
JTextArea(name=frameSourceArea, popupMenu=popup)

5.4 Borders

5.4.1 Regular Borders

Any Swing component that allows setting of borders can do it by using a set of pre-defined constants:

• loweredBevel

• raisedBevel

• loweredEtched

• raisedEtched

Example:

JPanel(name=panel1, border=raisedBevel)

5.4.2 Color and Line borders

Borders can also be specified using just a line width or a Color / line width combination:

- JPanel(name=panel1, border=3)
- JPanel(name=panel1, border=olive 3)
- JPanel(name=panel1, border=ff00ee 3)

5.4.3 Titled Border

A titled border is a special case, since it has a text associated with it. In this case, there is a special property that will
automatically create a TitledBorder and put the proper text in it, namely groupTitle:

JPanel(name=groupBox1, groupTitle=Customer Data):
- JLabel(name=nameLabel, text="Customer name:")
- JText(name=nameField)

Note: groupTitle is internationalizable, so you can pass a resource key to it, instead of a hard-coded String.

34 Chapter 5. Swing Features



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

5.5 Button Group

In order to create a ButtonGroup you just need to define it as a collection and pass it the names of buttons that define
a group. This works for both regular radio buttons as well as radio button menu items.

5.5.1 Radio buttons

- JPanel(name=controls):
- JRadioButton(name=rb1,text=Radio button 1)
- JRadioButton(name=rb2,text=Radio button 2,selected=true)
- ButtonGroup: [rb1,rb2]

5.5.2 Radio button menu items

- JMenu(name=optionsMenu, text=menu.options):
- JRadioButtonMenuItem(name=radio1Menu, text=menu.option1, onAction=option1)
- JRadioButtonMenuItem(name=radio2Menu, text=menu.option2)
- JRadioButtonMenuItem(name=radio3Menu, text=menu.option3)
- ButtonGroup: [radio1Menu, radio2Menu, radio3Menu]

5.6 Colors

Colors can be specified using a standard HTML/CSS style syntax. Valid values are:

• Hex Color:

JTextArea(name=textArea, background=ff00ee)

• Short hex color (e.g. f0e gets interpreted as ff00ee):

JTextArea(name=textArea, background=f0e)

• HTML color name (case-insensitive):

JTextArea(name=textArea, background=olive)

Note: HTML color names: http://www.w3schools.com/html/html_colornames.asp

5.7 Dimensions

Dimension (java.awt.Dimension) values can be specified using a width x height syntax, e.g:

MyCustomPanel(size=800x400)

5.8 Fonts

Fonts can be specified using a CSS-like syntax: bold|italic size name:

5.5. Button Group 35

http://www.w3schools.com/html/html_colornames.asp


Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

JButton(font=italic)
JButton(font=italic bold)
JButton(font=italic 14pt)
JButton(font=Arial)
JButton(font=italic bold 14pt Arial)

5.9 Icons and images

Any Swing API that expects an Icon or Image can be expressed by simply putting in the image path, relative to the
caller class that initiated the build process.:

JMenuItem(text=menu.save, icon=images/document-save.png)

Alternatively, if you initialized the builder with a ResourceBundle to activate internationalization, you can pass a
resource key instead. The builder will look for the path to the image via the key in the bundle instead, e.g.:

YAML:

JMenuItem(text=menu.save, icon=images.saveDocument)

Properties file:

images.saveDocument=/myapp/resources/images/document-save.png

5.10 JComboBox

5.10.1 Databinding

In order to bind a List to a JComboBox, you need to bind it to its model property, e.g.:

bind:
- jComboBox.model: this.books

An alternate (and arguably more powerful) databinding method involves using the GlazedLists library, please refer to
the relevant chapter for more details.

5.11 JDesktopPane

5.11.1 JInternalFrame integration

A JDesktopPane can be placed in a JFrame or a regular JPanel, followed by one or more instances of a
JInternalFrame, e.g.:

JPanel:
- JDesktopPane(name=desktop,dragMode=outlineDragMode,visible=true):

- JInternalFrame(name=frame1,title=Frame 1,visible=true,selected=true):
- JButton(name=button1,text=Button 1)
- JLabel(name=label1,text=Label 1)
- MigLayout: |

[grow] [pref]
label1 button1

36 Chapter 5. Swing Features



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

- JInternalFrame(name=frame2,title=Frame 2,visible=true):
- JButton(name=button2,text=Button 2)
- JLabel(name=label2,text=Label 2)
- MigLayout: |

[grow] [pref]
label2 button2

- MigLayout: |
[grow]
desktop [grow]

5.12 JFrame

JFrame support in the Swing JavaBuilder adds custom processing for the following properties:

• size

Can be in width_x_height format (e.g. 800x400) or packed to indicate the JFrame.pack() method should
be called at the end (after all the child components have been added), e.g.:

JFrame(size=800x400)
JFrame(size=packed)

• state

Allows setting the extended state of a frame, valid values are:

• max

• maxh

• maxv

• icon

JFrame(state=max)

5.13 JList

5.13.1 Databinding

In order to bind a List to a JList, you need to bind it to its model property, e.g.:

bind:
- jList.model: this.books

An alternate (and arguably more powerful) databinding method involves using the GlazedLists library, please refer to
the relevant chapter for more details.

5.14 JScrollPane

Used to wrap components in a scrollable pane. Since it only has one child underneath, it is entered not as a YAML
list, but a single item:

5.12. JFrame 37



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

JScrollPane(name=scrollPane1, verticalScrollBarPolicy=asNeeded,horizontalScrollBarPolicy=asNeeded):
JTextArea(name=textArea)

You can also use the shorter vScrollBar and hScrollBar aliases:

JScrollPane(name=scrollPane1, vScrollBar=asNeeded, hScrollBar=asNeeded):
JTextArea(name=textArea

Valid values for both properties are:

• always

• asNeeded

• never

5.15 JSplitPane

In order to use a JSplitPane just list the child components underneath it. The first two will be automatically added as
the left/right (or top/bottom) panes,e.g.:

JPanel:
- JSplitPane(name=split1,orientation=verticalSplit):

- JCustomPanel1(name=panel1)
- JCustomPanel2(name=panel2)

The orientation property’s verticalSplit or horizontalSplit values define the type of split.

5.16 JTabbedPane

In order to create tab pages, just list the controls you wants as tabs underneath the JTabbedPane node. In order to
specify the tab title, tooltip and icon use the following properties:

• tabTitle (localizable)

• tabToolTip (localizable)

• tabIcon

• tabEnabled

Those are used only if a component is listed underneath a JTabbedPane and are ignored if used anywhere
else.:

- JTabbedPane(name=tabs):
- JPanel(tabTitle=tab.frameYamlSource, tabIcon=images/tab1.png)

5.17 JTable

5.17.1 Custom Table Models

You can integrate custom table models into your JTables. First, you must register your custom model (usually in the
main(), so that the Swing JavaBuilder engine is aware of it, e.g.:

38 Chapter 5. Swing Features



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

SwingJavaBuilder.getConfig().addType(MyCustomTableModel.class);

Then you can just refer to it directly:

JPanel:
- JScrollPane(name=scroll2):

JTable(name=table1):
- MyCustomTableModel(name=model)

Note: Your custom table does not actually need to have name property. If it does not exist, the Swing JavaBuilder
will handle it as a virtual property. A named instance of the model (that you can manipulate from the Java code) will
be created, e.g.:

private MyCustomTableModel model; //reference will be set during build process

Also, please read the GlazedLists chapter on information on some custom GlazedLists table models that are integrated
into the Swing JavaBuilder as an optional plugin.

5.17.2 Table Columns

JTable provides an easy way to create table columns, by just specifying a list of TableColumn objects underneath
it, e.g.:

JPanel:
- JScrollPane(name=scroll2):

JTable(name=table1):
- TableColumn(name=col1,resizable=true, headerValue=Column 1)
- TableColumn(name=col2,resizable=true, headerValue=Column 2)
- TableColumn(name=col3,resizable=false, headerValue=Column 3)

When processing the list of table columns, the builder will evaluate the columns that are there already. If it can match
based on the identifier or headerValue then it will use that existing columns, otherwise it will create a new one and add
it to the JTable.

5.17.3 Cell Editor

Adding cell editors to a column is very easy. You can either define an explicit TableCellEditor implementation:

JTable(name=table1):
- TableColumn(name=col1,resizable=true, headerValue=Column 1):

- MyCustomCellEditor(name=col1Editor)

or you can define an explicit JCheckBox, JComboBox or JTextField underneath it. In this case the builder will
automatically wrap it with a DefaultCellEdior wrapper:

JTable(name=table1):
- TableColumn(name=col1,resizable=true, headerValue=Column 1):

- JComboBox(name=col1Box)
- TableColumn(name=col2,resizable=true, headerValue=Column 2):

- JCheckBox(name=col2Box)
- TableColumn(name=col3,resizable=false, headerValue=Column 3):

- JTextField(name=col3Field)

5.17. JTable 39



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

5.17.4 Cell Renderer

Similarly, you can define a TableCellRenderer underneath a column:

JTable(name=table1):
- TableColumn(name=col1,resizable=true, headerValue=Column 1):

- MyCustomRenderer(name=col1Renderer)

If you want to define a column header renderer, just add a forHeader=true property:

JTable(name=table1):
- TableColumn(name=col1,resizable=true, headerValue=Column 1):

- MyCustomRenderer(name=col1Renderer, forHeader=true)

5.18 Event handlers

Here’s a complete list of event handlers by component type. Next to them is also the event-specific class that can get
passed to your Java method if you require it (just remember to make it part of the method’s signature), e.g.:

private void someButtonClicked() {
//...one valid signature...

}
private void someButtonClicked(ActionEvent evt) {

//...another valid signature ...
}
private void someButtonClicked(JButton source) {

//...another valid signature ...
}
private void someButtonClicked(JButton source, Action evt) {

//...yet another valid signature ...
}

• Action
Event Name Event Class

onAction ActionEvent

• (Abstract) Button

onAction ActionEvent

• Component

onFocus FocusEvent
onFocusLost FocusEvent
onKeyPressed KeyEvent
onKeyReleased KeyEvent
onKeyTyped KeyEvent
onMouseClicked MouseEvent
onMouseDoubleClicked MouseEvent
onMouseDragged MouseEvent
onMouseEntered MouseEvent
onMouseExited MouseEvent
onMouseMoved MouseEvent
onMousePressed MouseEvent
onMouseReleased MouseEvent
onMouseRightClicked MouseEvent
onMouseWheelMoved MouseWheelEvent

40 Chapter 5. Swing Features



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

• JComboBox

onAction ActionEvent

• JFrame

onStateChanged WindowEvent
onWindowActivated WindowEvent
onWindowClosed WindowEvent
onWindowClosing WindowEvent
onWindowDeactivated WindowEvent
onWindowDeiconified WindowEvent
onWindowFocus WindowEvent
onWindowFocusLost WindowEvent
onWindowIconified WindowEvent
onWindowOpened WindowEvent

• JTabbedPane

onChange ChangeEvent

• JTable

onSelection ListSelectionEvent

• JTextField

onAction ActionEvent

• JTree

onSelection TreeSelectionEvent

• Window
onStateChanged WindowEvent
onWindowActivated WindowEvent
onWindowClosed WindowEvent
onWindowClosing WindowEvent
onWindowDeactivated WindowEvent
onWindowDeiconified WindowEvent
onWindowFocus WindowEvent
onWindowFocusLost WindowEvent
onWindowIconified WindowEvent
onWindowOpened WindowEvent

5.19 Customizing BetterBeansBinding logic

As mentioned previously Swing JavaBuilder uses the Better Beans Binding (BBB) library for data binding support.
However, in some cases the default binding logic may not be flexible enough for all cases and may require further
customization (such as adding a custom Converter). There are two ways to accomplish this.

5.19.1 BindingsGroup modification

When a BuildResult object is generated via a build, it’s getBindingContext() method will return a standard BBB
BindingGroup object: http://www.jarvana.com/jarvana/view/it/tidalwave/betterbeansbinding/betterbeansbinding-
core/1.3.0/betterbeansbinding-core-1.3.0-javadoc.jar!/org/jdesktop/beansbinding/BindingGroup.html

5.19. Customizing BetterBeansBinding logic 41

http://www.jarvana.com/jarvana/view/it/tidalwave/betterbeansbinding/betterbeansbinding-core/1.3.0/betterbeansbinding-core-1.3.0-javadoc.jar!/org/jdesktop/beansbinding/BindingGroup.html
http://www.jarvana.com/jarvana/view/it/tidalwave/betterbeansbinding/betterbeansbinding-core/1.3.0/betterbeansbinding-core-1.3.0-javadoc.jar!/org/jdesktop/beansbinding/BindingGroup.html


Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

Since BuildResult is generic across all domains, it returns an Object from that method. It needs to be cast explicitly to
BindingGroup when working in Swing.

BindingGroup group = (BindingGroup)result.getBindingContext();

5.19.2 Registering a BindingListener

Another option is to register a BindingListener for the whole application. This will get fired every time a binding is
created, but before the BBB bind() is called.

SwingJavaBuilder.getConfig().addBindingListener(
new IBindingListener<Binding<? extends Object,

? extends Object,
? extends Object,
? extends Object>>() {

@Override
public void bindingCreated(BuildResult result,

Binding<? extends Object,
? extends Object,
? extends Object,
? extends Object> binding) {

//do something, e.g. add custom converter depending on the type of the property

}
});

42 Chapter 5. Swing Features



CHAPTER

SIX

SWING LAYOUT MANAGEMENT

Layout management is one of the biggest pain points in any UI development. The Swing JavaBuilder solves it by
using a simple DSL (Domain Specific Language) that runs on top of the brilliant MigLayout layout manager.

After using MigLayout you will never go back to any other JDK layout manager, it makes them all obsolete.

6.1 MigLayout DSL

6.1.1 What is MigLayout?

MigLayout is a brilliant layout manager for Swing and SWT, written by Mikael Grev and released under the open
source BSD license. It revolutionizes layout management by making it much more dynamic and thus greatly reducing
the number of lines of code one has to write, even for very complex layouts.

MigLayout is available for download from http://miglayout.com. We recommend to read the Cheat Sheet and intro-
duction to MigLayout available on that website. Once you try MigLayout you can never go back to archaic layout
managers such as GridBagLayout or GroupLayout. It even makes the formidable JGoodies Forms layout manager
obsolete.

6.1.2 Visual MigLayout DSL syntax (a GUI builder in pure text)

The visual layout DSL is basically a way to have a GUI builder, but in a pure text format. In short, it allows you to
define controls’ layout in a text file (by using their names) and from their relative alignments and number of rows, the
builder will attempt to automatically figure out how many rows/columns there are, which control goes into which cell,
whether it should be left/top/right/center aligned, how many cells should it span, etc.

The layout DSL translates the constraints into standard MigLayout constraints, hence this is basically nothing more
than a visual text-based interface to the full power of MigLayout.

Quick Example

Let’s say we need to create a simple dialog with 3 rows: a table/text field in the first two rows, and OK/Cancel buttons
(right aligned) in the last row.

43

http://miglayout.com


Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

MigLayout: |
[[insets 8]
[pref] [grow]
>"First name:" firstName
>"Last name:" lastName
>okButton+*,cancelButton [growy, bottom]
{okButton: tag OK, cancelButton: tag Cancel}

From this you can probably see right away that we have 3 rows (as in 3 lines of text), the labels are in the same vertical
column, the text fields are in the same vertical column (which is flagged to “grow”, a standard MigLayout constraint).

6.1.3 General format

MigLayout: |
[[global layout constraints]] #optional
[column constraints] [another column’s constraints] #optional
control1 control2 [row constraint - optional]
control3 control4
{control1: specific MigLayout constraint (e.g. baseline) } #optional

6.1.4 Alignment

Goes before the control name, e.g. >fieldNameLabel. If none are presents it defaults to top, left.

< horizontally left aligned (can be omitted, it is the default value)
| horizontally centered
> horizontally right aligned
^ vertically top aligned (usually omitted, use only when needed to override the default, e.g. “baseline” in MigLayout)
- vertically centered
/ vertically bottom aligned

6.1.5 Cell Spanning

In +X+Y format (X= horizontal cells to span, Y= vertical cells to span), e.g. okButton+2.

Examples:

+* # horizontally span rest of row (e.g. "okButton+*")
+2 # horizontally span 2 cells
+2+4 # horizontally span 2 cells, vertically span 4 cells
+2+* # horizontally span 2 cells, vertically span the the rest of the column

44 Chapter 6. Swing Layout Management



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

6.1.6 Cell Splitting

In controlName1,controlName2 format (i.e. control names separated with a comma). Used when you want to
place multiple controls into the same cell. All the general cell constraints (alignment, spanning, etc.) are applied to
the first control, e.g. okButton+*,cancelButton.

6.1.7 Size Groups

In =X format (X = size group number), e.g. okButton=1 cancelButton=1

Allows to specify which controls should have the same preferred size. Useful especially when you want different
command buttons to have the same size (e.g. OK and Cancel). There is also support for horizontal and vertical size
groups (i.e. those that apply only to common width and/or height, instead of both). It is defined by appending an ‘x’
or ‘y’ after the size group, e.g.:

okButton=1x cancelButton=1x

6.1.8 Width and Height

Goes after the control name, e.g. fieldName>^. If none are presents it defaults to whatever is most logical
for the current component type.

< Minimum width
| Preferred width
> Maximum width
^ Minimum height
- Preferred height
/ Maximum height

6.1.9 Control Auto-Creation

The MigLayout node recognizes common naming conventions and can auto-create a control of the specified type based
on its name. That removes the need to explicitly define such basic controls as JTextField, etc.

The accepted control prefixes are:

Prefix Control Type
btn JButton
tgl JToggleButton
txt JTextField
cbx JCheckBox
rb JRadioButton
cmb JComboBox
lst JList
txa JTextArea
tbl JTable
tr JTree
sld JSlider
prg JProgressBar
pwd JPasswordField
spn JSpinner
sep JSeparator

6.1. MigLayout DSL 45



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

Note: for JButton and JToggleButton, the suffix will be used to find label and map onAction to Java method.
E.g. “btnApply” will generate a JButton, with a text “Apply” and the onAction listened wired to the equivalent
apply().

Here’s a fully verbose example:

JFrame(name=frame, title=frame.title, size=packed, defaultCloseOperation=exitOnClose):
- JLabel(name=fNameLbl, text=label.firstName)
- JLabel(name=lNameLbl, text=label.lastName)
- JLabel(name=emailLbl, text=label.email)
- JTextField(name=fName)
- JTextField(name=lName)
- JTextField(name=email)
- JButton(name=save, text=button.save, onAction=[$validate,save,done])
- JButton(name=cancel, text=button.cancel, onAction=[$confirm,cancel])
- MigLayout: |

[pref] [grow,100] [pref] [grow,100]
fNameLbl fName lNameLbl lName
emailLbl email+*
>save+*=1,cancel=1

And here is what it would look like after using control auto-creation (to create all the JTextField instances by
prefixing the control name with txt):

JFrame(name=frame, title=frame.title, size=packed, defaultCloseOperation=exitOnClose):
- JLabel(name=fNameLbl, text=label.firstName)
- JLabel(name=lNameLbl, text=label.lastName)
- JLabel(name=emailLbl, text=label.email)
- JButton(name=save, text=button.save, onAction=[$validate,save,done])
- JButton(name=cancel, text=button.cancel, onAction=[$confirm,cancel])
- MigLayout: |

[pref] [grow,100] [pref] [grow,100]
fNameLbl txtFName lNameLbl txtLName
emailLbl txtEmail+*
>save+*=1,cancel=1

Notice that we did not have to explicitly define the thre JTextField entries any more. Just by calling the controls
txtFName,txtLName,txtEmail the builder knew you wanted to create controls of type JTextField and did
that for you.

Note: Notice the special handling of JButton: the button’s name suffix (e.g. “btnOK” = “OK”, “btnDelete”
= “Delete”) will be converted to Pascal case and a corresponding Java method (e.g. ok(), delete()) will be
expected to be present in the Java class so that onAction can be wired automatically.

Warning: if you create a “btnNew” JButton that would automatically map to a Java method new(), which is
a reserved keyword and cannot be compiled. In this corner case we will try to match it to a doNew() method
instead.

6.1.10 String Literal Controls

In order to further simplify the creation of user interfaces, the DSL allows you to enter string literals (embedded in
double quotes) instead of control names. Such entries will automatically be interpreted as labels (e.g. JLabel for
Swing, Label for SWT, etc.) and an underlying control will be created without the need to manually specify it in the
YAML.

Example:

46 Chapter 6. Swing Layout Management



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

JFrame(name=frame, title=frame.title, size=packed, defaultCloseOperation=exitOnClose):
- JButton(name=save, text=button.save, onAction=[$validate,save,done])
- JButton(name=cancel, text=button.cancel, onAction=[$confirm,cancel])
- MigLayout: |

[pref] [grow,100] [pref] [grow,100]
"label.firstName" txtFName "label.lastName" txtLName
"label.email" txtEmail+*
>save+*=1,cancel=1

or the more verbose, traditional way, using explicit label definitions:

JFrame(name=frame, title=frame.title, size=packed, defaultCloseOperation=exitOnClose):
- JLabel(name=fNameLbl, text=label.firstName)
- JLabel(name=lNameLbl, text=label.lastName)
- JLabel(name=emailLbl, text=label.email)
- JButton(name=save, text=button.save, onAction=[$validate,save,done])
- JButton(name=cancel, text=button.cancel, onAction=[$confirm,cancel])
- MigLayout: |

[pref] [grow,100] [pref] [grow,100]
fNameLbl txtFName lNameLbl txtLName
emailLbl txtEmail+*
>save+*=1,cancel=1

HTML content

It is possible to enter HTML tags in the label, in the format accepted by JLabel. It is not required to put in the
<html/> tag around it, Swing JavaBuilder will do it automatically if it encounters HTML tags in the text, e.g.:

JFrame(name=frame, title=frame.title, size=packed, defaultCloseOperation=exitOnClose):
- MigLayout: |

[pref] [grow,100] [pref] [grow,100]
"<b>First name:</b>" txtFName "<i>Last name:</i>:" txtLName

6.1.11 Control Prototypes

This feature is designed to enforce consistency of how common controls get created throughout an app. Let’s say we
want the Add button in our application to always have a text of “Add”, trigger the addNew() Java method when
clicked and also use a standard icon.

All we have to do is define a prototype YAML definition in our main() method:

SwingJavaBuilder.getConfig().prototype(
"JButton(name=btnAdd, text=Add, onAction=addNew, icon=/myapp/images/document-new.png)");

And we just refer to that prototype by prefixing it’s name with $ in the MigLayout section, e.g.:

- MigLayout: |
[grow] [pref]
"Name:" txtName
$btnAdd

The $btnAdd control will get auto-created defined the prototype definition we saw earlier.

If later you decided to change something about it (e.g. new icon, new text, add tooltip, etc.) all you have to do is
change it in one place and it will get reflected throughout the whole application.

6.1. MigLayout DSL 47



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

6.1.12 Complex Example

From John O’Conners Layout Manager Challenge:

Here’s how it would look implemented in the Swing JavaBuilder:

YAML:

JPanel:
- JScrollPane(name=scroll1): JTextArea(name=source,font=Monospaced,editable=false)
- MigLayout: |

[200,grow] [right] [200,grow] [200,grow]
scroll1+1+* "Last name:" txtLName "First Name" txtFName

48 Chapter 6. Swing Layout Management



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

"Phone:" txtPhone "Email:"+2,txtEmail
"Address 1:" txtAddress1+*
"Address 2:" txtAddress2+*
"City:" txtCity
"State:" txtState "Postal Code:" txtPostal
"Country:" txtCountry
^|btnNew+*=1,^btnDelete=1,^btnEdit=1,^btnSave=1,^btnCancel=1 [grow]

6.2 MigLayout

If for whatever reason you do not want to use the MigLayout DSL, you can still use regular MigLayout properties and
syntax, e.g.:

JFrame(title=My Frame):
content:

- JLabel(name=firstNameLabel,text=First Name)
- JTextField(name=firstName)
- JLabel(name=lastNameLabel,text=Last Name)
- JTextField(name=lastName)
- JButton(name=okButton)
- MigLayout:

layoutConstraints: wrap 2 #general layout constraints
columnConstraints: [] [grow] [] #general column constraints
rowConstraints: [] [] [] #general row constraints
constraints:

- firstNameLabel: right
- firstName: 200px, sg 1
- lastNameLabel: right
- lastName: 200px, sg 1
- okButton: span, right, tag ok

But we recommend you always use the DSL syntax instead, it’s much more powerful and easier to use after the initial
learning curve.

6.3 CardLayout

CardLayout support is provided by adding a CardLayout node at the end of the list of child components, e.g.:

JPanel:
- JPanel(name=panel1)
- JPanel(name=panel2)
- CardLayout(name=cards): [panel1,panel2]

By default the card name is the same as the name of the control that was added as a card. Using the name
property you can get a handle to the created instance of CardLayout in your Java-side code, e.g.:

private CardLayout cards;

6.4 FlowLayout

In order to use FlowLayout, just create a FlowLayout node at the end of the list of child components. No need to
specify which ones to add, they all get added automatically, e.g.:

6.2. MigLayout 49



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

JPanel:
- JPanel(name=panel1,groupTitle=Flow layout components):

- JLabel(text=Label 1)
- JButton(text=Button 1)
- JLabel(text=Label 2)
- JButton(text=Button 2)
- JLabel(text=Label 3)
- JButton(text=Button 4)
- JLabel(text=Label 5)
- JButton(text=Button 5)
- FlowLayout(alignment=left,hgap=30,vgap=30,alignOnBaseline=true)

6.5 Other layout managers

No other layout managers are supported. Any layout possible can be accomplished using just MigLayout, CardLay-
out and FlowLayout. GridBagLayout and GroupLayout are banished from Swing JavaBuilder, as they are virtually
impossible to code without an IDE-specific GUI builder (and are incredibly verbose on top of that).

50 Chapter 6. Swing Layout Management



CHAPTER

SEVEN

PLUGINS

The core Swing JavaBuilder library can be extended via plugins that provide integration with best-of-breed external
Swing libraries

7.1 Glazed Lists

GlazedLists is a best-of-breed open source library geared towards making databinding, sorting and filtering for Swing
and SWT controls easier and more productive. For a full overview on how GlazedList works, please visit their website:
http://publicobject.com/glazedlists/

In particular, check out their detailed tutorial: https://docs.google.com/Doc?id=dc5md22b_0g456kwd8 and screen-
casts: http://publicobject.com/glazedlists/media/Glazed_Lists_in_25_lines_of_code.mov

In order to register the GlazedList plugin you need to execute the following code in your main():

SwingGlazedListsConfig.init();

Below you will find information on how GlazedLists are integrated into the JavaBuilders library.

7.1.1 JList

EventListModel

The JList-specific model in GlazedLists is called EventListModel. You will need to define a GlazedLists EventList in
your Java code to hold the master list of objects and point the EventListModel.source property in the YAML file to it.

Java:

public class GlazedListJListPanel extends JPanel {
private EventList<String> values = new BasicEventList<String>();
private BuildResult result;
public GlazedListJListPanel() {

result = SwingJavaBuilder.build(this);
}

}

YAML:

JPanel:
- JList(name=list):

EventListModel(name=model,source=values)

When you add/remove items in your EventList, they will automatically be propagated to the JList EventListModel.

51

http://publicobject.com/glazedlists/
https://docs.google.com/Doc?id=dc5md22b_0g456kwd8
http://publicobject.com/glazedlists/media/Glazed_Lists_in_25_lines_of_code.mov


Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

7.1.2 JComboBox

EventComboBoxModel

The JComboBox-specific model in GlazedLists is called EventComboBoxModel. You will need to define a
GlazedLists EventList in your Java code to hold the master list of objects and point the EventComboBoxModel.source
property in the YAML file to it.

Java:

public class GlazedListJListPanel extends JPanel {
private EventList<String> values = new BasicEventList<String>();
private BuildResult result;
public GlazedListJListPanel() {

result = SwingJavaBuilder.build(this);
}

}

YAML:

JPanel:
- JComboBox(name=box):

EventComboBoxModel(name=model,source=values)

When you add/remove items in your EventList, they will automatically be propagated to the JComboBox EventCom-
boBoxModel.

7.1.3 JTable

EventTableModel

The JTable-specific model in GlazedLists is called EventTableModel. You will need to define a GlazedLists EventList
in your Java code to hold the master list of objects and point the EventTableModel.source property in the YAML file
to it.

Java:

public class Person {
private String firstName;
private String lastName;
private Date birthDate;
//getters and setters for all properties...

}

public class GlazedListJListPanel extends JPanel {
private EventList<Person> values = new BasicEventList<Person>();
private BuildResult result;
public GlazedListJListPanel() {

result = SwingJavaBuilder.build(this);
}

}

YAML:

JPanel:
- JTable(name=list):

- EventTableModel(name=model,source=values)

When you add/remove items in your EventList, they will automatically be propagated to the JTable Event-
TableModel.

52 Chapter 7. Plugins



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

Controlling table columns

The sample code shown above displays by default all properties that can be found in the Person POJO as table columns.
Usually though you would want to maintain some control over that, as well as customize certain parameters of the
column (e.g. the header string).

The simplest way to accomplish this is to define a columns=[] element:

JPanel:
- JTable(name=list):

- EventTableModel(name=model,source=values,columns=[firstName,lastName])

The example above will display only the “firstName” and “lastName” properties as columns. Alternatively, you can
to explicitly define the TableColumn instances:

JPanel:
- JTable(name=list):

- EventTableModel(name=model,source=values)
- TableColumn(name=firstName,headerValue=column.firstName)
- TableColumn(name=lastName,headerValue=column.lastName)

Since the “headerValue” column is localizable, it will automatically fetch the corresponding string key from the con-
figured resource bundles.

Yet another option is to define all the columns you need via columns=[] and then just define the TableColumn
instance if you need to customize it further (e.g. add a cell renderer or editor).

Localizing column headers

When you define a list of columns in the columns=[] parameter, the builder will attempt to automatically look up
the header name for it using the following strategy:

1. look for a resource key equal to “SimpleClassName.PropertyName”, e.g. “Person.firstName”

2. look for a resource key equal to “PropertyName”, e.g. “firstName”

3. if no resource keys are found, attempt to build a header directly from the property name, e.g. “firstName”
becomes “First Name”

Handling duplicate column names

Within a single YAML file, all object names must be unique. So what happens if we have let’s say two tables that
display data from different POJOs (or maybe different views of the same POJO) that happen to have the same names?
In this particular case, you can use the source property of the TableColumn level.

If this property is defined, the builder will use that instead of name to map a TableColumn to a POJO’s property.:

JPanel:
- JTable(name=list1):

- EventTableModel(name=model,source=values)
- TableColumn(name=column1,source=firstName,headerValue=column.firstName)
- TableColumn(name=column2,source=lastName,headerValue=column.lastName)

- JTable(name=list2):
- EventTableModel(name=model,source=values)
- TableColumn(name=column3,source=firstName,headerValue=column.firstName)
- TableColumn(name=column4,source=lastName,headerValue=column.lastName)

In the sample above, two different tables display the same POJO data by using the optional “source” to avoid name
clashes on TableColumn.name.

Sorting

In order to enable sorting, you have to add the sort property, which has two allowed values:

7.1. Glazed Lists 53



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

• single - sorts by single column only

• multi - allows sorting by multiple columns

Sorting is activated by the user clicking with the mouse on the column headers.:

JPanel:
- JTable(name=list):

- EventTableModel(name=model,source=values,columns=[firstName,lastName],sort=multi)

In order to specify a pre-defined initial sort, pass in the list of column names into the sortBy property, e.g.:

EventTableModel(source=values,columns=[firstName,lastName,birthDate],
sort=multi,sortBy=[birthDate,lastName])

Note: The example above should a be a single line in your YAML file (it’s wrapped around here purely for display
purposes).

54 Chapter 7. Plugins



CHAPTER

EIGHT

EXTENDING THE JAVABUILDERS
ENGINE

8.1 Overview

The core JavaBuilders engine is domain-agnostic, i.e. there is no logic in it specific to any particular toolkit such as
Swing or SWT. Each of domain-specific builders (such as the Swing JavaBuilder or the SWT JavaBuilder) are just thin
proxies for the common Builder APIs which pass along a pre-configured instance of a BuilderConfig object, which
contains all the component types and custom handlers for each UI toolkit.

This builder configuration object is usually exposed via the static getConfig() method on the builder, e.g.
SwingJavaBuilder.getConfig().

By manipulating its properties you can change the default configuration, register new object types, customized handlers
for particular controls or particular properties of a control.

8.2 Registering new component types

All you need to do is call the BuilderConfig.addType(Class clazz) method, presumably from your ap-
plication’s main():

SwingJavaBuilder.getConfig().addType(MyCustomComponent.class);

and then you can start referring to it directly in the YAML file:

MyCustomClass(property1=value1,property2=value2, etc...)

You can also add it with a specific alias to avoid name collision (by default it takes the simple class name):

SwingJavaBuilder.getConfig().addType("CustomClassAlias",MyCustomClass.class);

CustomClassAlias(property1=value1,property2=value2, etc...)

8.3 Customizing object creation : ITypeHandler

If you need to write your own custom creation code for a class instance (e.g. for a control that has a constructor
that expects parameters during initialization), you need to implement an instance of ITypeHandler, usually by
extending AbstractTypeHandler. It needs to be then registered for the class-specific TypeDefinition object
within the BuilderConfig instance.

55



Swing JavaBuilder : Maximum productivity with minimum code, Release 1.1

8.4 Customizing initialization logic: ITypeHandlerAfterCreationPro-
cessor

If your object does not need special constructor logic, but just some post-creation initialization, then you need to
implement the simple ITypeHandlerAfterCreationProcessor interface and register it with your type’s
TypeDefinition. It’s logic will be executed after the object is created, but before any children get processed.

8.5 Customizing post-processing of children nodes; ITypeHan-
dlerFinishProcessor

If you need to inject some logic after a parent’s child nodes have been all processed, you need to implement the
ITypeHandlerFinishProcessor interface and add it to the appropriate TypeDefinition object.

56 Chapter 8. Extending the JavaBuilders engine


	Introduction
	Abstract
	Preface
	License
	Installation

	Overview
	What is JavaBuilders all about?
	Why would I use this instead of regular coding by hand?
	What is YAML?
	Compact YAML syntax
	Development tools
	Benefits
	Drawbacks

	Swing JavaBuilder in 60 seconds or less
	Core Features
	Obtaining references to created components
	Hooking up event listeners to Java methods
	Databinding
	Input validation
	Executing long running methods on a background thread
	Executing multiple methods together
	Custom progress indicators for long running methods
	Domain-specific Implementations
	Internationalization
	Enum property values
	Using custom components
	Custom global commands
	Build events
	Hot deployment of UI components
	Logging via SLF4J

	Swing Features
	Overview
	Component properties
	Actions and menus
	Borders
	Button Group
	Colors
	Dimensions
	Fonts
	Icons and images
	JComboBox
	JDesktopPane
	JFrame
	JList
	JScrollPane
	JSplitPane
	JTabbedPane
	JTable
	Event handlers
	Customizing BetterBeansBinding logic

	Swing Layout Management
	MigLayout DSL
	MigLayout
	CardLayout
	FlowLayout
	Other layout managers

	Plugins
	Glazed Lists

	Extending the JavaBuilders engine
	Overview
	Registering new component types
	Customizing object creation : ITypeHandler
	Customizing initialization logic: ITypeHandlerAfterCreationProcessor
	Customizing post-processing of children nodes; ITypeHandlerFinishProcessor


