using System; using System.Collections.Generic; namespace Oni.Motoko { internal class Stripify { private const int BeginStrip = int.MinValue; private int[] tlist; private int[] adjacency; private int[] degree; private List strips; private bool[] used; public static int[] FromTriangleList(int[] triangleList) { var triStrips = new Stripify(triangleList); return triStrips.Run(); } public static int[] ToTriangleList(int[] triangleStrips) { int triangleCount = 0; for (int i = 0; i < triangleStrips.Length; i++) { triangleCount++; if (triangleStrips[i] < 0) triangleCount -= 2; } var triangles = new int[triangleCount * 3]; int pos = 0; var face = new int[3]; int order = 0; for (int i = 0; i < triangleStrips.Length; i++) { if (triangleStrips[i] < 0) { face[0] = triangleStrips[i] & int.MaxValue; i++; face[1] = triangleStrips[i]; i++; order = 0; } else { face[order] = face[2]; order = (order + 1) % 2; } face[2] = triangleStrips[i]; Array.Copy(face, 0, triangles, pos, 3); pos += 3; } return triangles; } private Stripify(int[] triangleList) { tlist = triangleList; } private int[] Run() { strips = new List(); GenerateAdjacency(); while (GenerateStrip()) ; // // Generate 1 triangle long strips for all triangles that were not included // in triangle strips // for (int i = 0; i < degree.Length; i++) { if (!used[i]) { int j = i * 3; strips.Add(tlist[j + 0] | BeginStrip); strips.Add(tlist[j + 1]); strips.Add(tlist[j + 2]); used[i] = true; } } return strips.ToArray(); } private bool GenerateStrip() { int current = -1; int minDegree = 4; int minAdjacentDegree = 4; // // Find a triangle to start with. The triangle with the lowest degree // is picked as a start triangle. If multiple triangles have the same // degree then the adjacent triangles are checked for lowest degree. // for (int t = 0; t < degree.Length; t++) { if (used[t] || degree[t] == 0) continue; if (degree[t] < minDegree) { minDegree = degree[t]; minAdjacentDegree = 4; current = t; } else if (degree[t] == minDegree) { // // We have 2 candidates for a start triangle with the same degree. // Check their neighbours for lowest degree to decide which candidate to use. // for (int k = 0; k < 3; k++) { int a = adjacency[t * 3 + k]; if (a == -1 || used[a] || degree[a] == 0) continue; if (degree[a] < minAdjacentDegree) { minAdjacentDegree = degree[a]; current = t; } } } } if (current == -1) { // // A start triangle cannot be found. Either there are no more unused triangles left // or all remaining triangles have degree = 0. // return false; } UseTriangle(current); // // Find a triangle adjacent to the start triangle so we can decide // on a vertex order for the start triangle. If there are multiple // adjacent triangles the one with lowest degree is used. // int next = -1; int edge = 0; minDegree = 4; for (int e = 0; e < 3; e++) { int a = adjacency[current * 3 + e]; if (a == -1 || used[a]) continue; // // NOTE: Don't check for degree = 0. The previous UseTriangle(current) can make // adjacent triangles have a 0 degree. It works because all we are interested in // is which adjacent triangle has the lowest degree. // if (degree[a] < minDegree) { minDegree = degree[a]; next = a; edge = e; } } // // Begin a new triangle strip // var triangle = new int[3]; triangle[0] = tlist[(current * 3) + (edge + 2) % 3]; triangle[1] = tlist[(current * 3) + (edge + 0) % 3]; triangle[2] = tlist[(current * 3) + (edge + 1) % 3]; strips.Add(triangle[0] | BeginStrip); strips.Add(triangle[1]); strips.Add(triangle[2]); // // Continue the triangle strip as long as possible // int order = 0; while (next != -1) { UseTriangle(next); triangle[0] = triangle[1 + order]; // // Search an edge in triangle "next" that matches the "exit" edge of triangle "current" // for (int v = 0; v < 3; v++) { int t = next * 3; if (tlist[t + v] == triangle[(2 + order) % 3] && tlist[t + (v + 1) % 3] == triangle[order]) { edge = (v + 2 - order) % 3; triangle[1 + order] = tlist[t + (v + 2) % 3]; break; } } strips.Add(triangle[1 + order]); // // Replace "current" with "next" and find a "next" triangle that is adjacent with "current" // current = next; next = adjacency[current * 3 + edge]; if (next == -1 || used[next]) break; UseTriangle(next); // // Alternate vertex ordering // order = (order + 1) % 2; } return true; } private void UseTriangle(int t) { degree[t] = 0; used[t] = true; // // Decrease the degree of all adjacent triangles by 1. // for (int e = 0; e < 3; e++) { int a = adjacency[t * 3 + e]; if (a != -1 && degree[a] > 0) degree[a]--; } } #region private struct Edge private struct Edge : IEquatable { public readonly int V1; public readonly int V2; public Edge(int V1, int V2) { this.V1 = V1; this.V2 = V2; } public static bool operator ==(Edge e1, Edge e2) => e1.V1 == e2.V1 && e1.V2 == e2.V2; public static bool operator !=(Edge e1, Edge e2) => e1.V1 != e2.V1 || e1.V2 != e2.V2; public bool Equals(Edge edge) => V1 == edge.V1 && V2 == edge.V2; public override bool Equals(object obj) => obj is Edge && Equals((Edge)obj); public override int GetHashCode() => V1 ^ V2; } #endregion private void GenerateAdjacency() { adjacency = new int[tlist.Length]; degree = new int[tlist.Length / 3]; used = new bool[tlist.Length / 3]; for (int i = 0; i < adjacency.Length; i++) adjacency[i] = -1; // // Store all the edges in a dictionary for easier lookup // var edges = new Dictionary(); for (int t = 0; t < tlist.Length; t += 3) { for (int v = 0; v < 3; v++) { var edge = new Edge(tlist[t + v], tlist[t + (v + 1) % 3]); edges[edge] = t / 3; } } // // Fill the adjacency array // for (int t = 0; t < tlist.Length; t += 3) { for (int e = 0; e < 3; e++) { // // We already have an adjacent triangle for this edge. // This means that there are 3 or more triangles that have a // common edge but this is not very common and we'll just // ignore it. // if (adjacency[t + e] != -1) continue; // // Notice that the edge must be reversed compared to the // order they were stored in the dictionary to preserve // trinangle vertex ordering. // var edge = new Edge(tlist[t + (e + 1) % 3], tlist[t + e]); int k; // // Note the k != t / 3 check to avoid making degenerate triangles // adjacent to themselfs. // if (edges.TryGetValue(edge, out k) && k != t / 3) { adjacency[t + e] = k; degree[t / 3]++; } } } } } }