// List implementation -*- C++ -*- // Copyright (C) 2001-2021 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996,1997 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file bits/stl_list.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{list} */ #ifndef _STL_LIST_H #define _STL_LIST_H 1 #include #include #if __cplusplus >= 201103L #include #include #include #endif namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION namespace __detail { // Supporting structures are split into common and templated // types; the latter publicly inherits from the former in an // effort to reduce code duplication. This results in some // "needless" static_cast'ing later on, but it's all safe // downcasting. /// Common part of a node in the %list. struct _List_node_base { _List_node_base* _M_next; _List_node_base* _M_prev; static void swap(_List_node_base& __x, _List_node_base& __y) _GLIBCXX_USE_NOEXCEPT; void _M_transfer(_List_node_base* const __first, _List_node_base* const __last) _GLIBCXX_USE_NOEXCEPT; void _M_reverse() _GLIBCXX_USE_NOEXCEPT; void _M_hook(_List_node_base* const __position) _GLIBCXX_USE_NOEXCEPT; void _M_unhook() _GLIBCXX_USE_NOEXCEPT; }; /// The %list node header. struct _List_node_header : public _List_node_base { #if _GLIBCXX_USE_CXX11_ABI std::size_t _M_size; #endif _List_node_header() _GLIBCXX_NOEXCEPT { _M_init(); } #if __cplusplus >= 201103L _List_node_header(_List_node_header&& __x) noexcept : _List_node_base{ __x._M_next, __x._M_prev } # if _GLIBCXX_USE_CXX11_ABI , _M_size(__x._M_size) # endif { if (__x._M_base()->_M_next == __x._M_base()) this->_M_next = this->_M_prev = this; else { this->_M_next->_M_prev = this->_M_prev->_M_next = this->_M_base(); __x._M_init(); } } void _M_move_nodes(_List_node_header&& __x) { _List_node_base* const __xnode = __x._M_base(); if (__xnode->_M_next == __xnode) _M_init(); else { _List_node_base* const __node = this->_M_base(); __node->_M_next = __xnode->_M_next; __node->_M_prev = __xnode->_M_prev; __node->_M_next->_M_prev = __node->_M_prev->_M_next = __node; # if _GLIBCXX_USE_CXX11_ABI _M_size = __x._M_size; # endif __x._M_init(); } } #endif void _M_init() _GLIBCXX_NOEXCEPT { this->_M_next = this->_M_prev = this; #if _GLIBCXX_USE_CXX11_ABI this->_M_size = 0; #endif } private: _List_node_base* _M_base() { return this; } }; } // namespace detail _GLIBCXX_BEGIN_NAMESPACE_CONTAINER /// An actual node in the %list. template struct _List_node : public __detail::_List_node_base { #if __cplusplus >= 201103L __gnu_cxx::__aligned_membuf<_Tp> _M_storage; _Tp* _M_valptr() { return _M_storage._M_ptr(); } _Tp const* _M_valptr() const { return _M_storage._M_ptr(); } #else _Tp _M_data; _Tp* _M_valptr() { return std::__addressof(_M_data); } _Tp const* _M_valptr() const { return std::__addressof(_M_data); } #endif }; /** * @brief A list::iterator. * * All the functions are op overloads. */ template struct _List_iterator { typedef _List_iterator<_Tp> _Self; typedef _List_node<_Tp> _Node; typedef ptrdiff_t difference_type; typedef std::bidirectional_iterator_tag iterator_category; typedef _Tp value_type; typedef _Tp* pointer; typedef _Tp& reference; _List_iterator() _GLIBCXX_NOEXCEPT : _M_node() { } explicit _List_iterator(__detail::_List_node_base* __x) _GLIBCXX_NOEXCEPT : _M_node(__x) { } _Self _M_const_cast() const _GLIBCXX_NOEXCEPT { return *this; } // Must downcast from _List_node_base to _List_node to get to value. reference operator*() const _GLIBCXX_NOEXCEPT { return *static_cast<_Node*>(_M_node)->_M_valptr(); } pointer operator->() const _GLIBCXX_NOEXCEPT { return static_cast<_Node*>(_M_node)->_M_valptr(); } _Self& operator++() _GLIBCXX_NOEXCEPT { _M_node = _M_node->_M_next; return *this; } _Self operator++(int) _GLIBCXX_NOEXCEPT { _Self __tmp = *this; _M_node = _M_node->_M_next; return __tmp; } _Self& operator--() _GLIBCXX_NOEXCEPT { _M_node = _M_node->_M_prev; return *this; } _Self operator--(int) _GLIBCXX_NOEXCEPT { _Self __tmp = *this; _M_node = _M_node->_M_prev; return __tmp; } friend bool operator==(const _Self& __x, const _Self& __y) _GLIBCXX_NOEXCEPT { return __x._M_node == __y._M_node; } #if __cpp_impl_three_way_comparison < 201907L friend bool operator!=(const _Self& __x, const _Self& __y) _GLIBCXX_NOEXCEPT { return __x._M_node != __y._M_node; } #endif // The only member points to the %list element. __detail::_List_node_base* _M_node; }; /** * @brief A list::const_iterator. * * All the functions are op overloads. */ template struct _List_const_iterator { typedef _List_const_iterator<_Tp> _Self; typedef const _List_node<_Tp> _Node; typedef _List_iterator<_Tp> iterator; typedef ptrdiff_t difference_type; typedef std::bidirectional_iterator_tag iterator_category; typedef _Tp value_type; typedef const _Tp* pointer; typedef const _Tp& reference; _List_const_iterator() _GLIBCXX_NOEXCEPT : _M_node() { } explicit _List_const_iterator(const __detail::_List_node_base* __x) _GLIBCXX_NOEXCEPT : _M_node(__x) { } _List_const_iterator(const iterator& __x) _GLIBCXX_NOEXCEPT : _M_node(__x._M_node) { } iterator _M_const_cast() const _GLIBCXX_NOEXCEPT { return iterator(const_cast<__detail::_List_node_base*>(_M_node)); } // Must downcast from List_node_base to _List_node to get to value. reference operator*() const _GLIBCXX_NOEXCEPT { return *static_cast<_Node*>(_M_node)->_M_valptr(); } pointer operator->() const _GLIBCXX_NOEXCEPT { return static_cast<_Node*>(_M_node)->_M_valptr(); } _Self& operator++() _GLIBCXX_NOEXCEPT { _M_node = _M_node->_M_next; return *this; } _Self operator++(int) _GLIBCXX_NOEXCEPT { _Self __tmp = *this; _M_node = _M_node->_M_next; return __tmp; } _Self& operator--() _GLIBCXX_NOEXCEPT { _M_node = _M_node->_M_prev; return *this; } _Self operator--(int) _GLIBCXX_NOEXCEPT { _Self __tmp = *this; _M_node = _M_node->_M_prev; return __tmp; } friend bool operator==(const _Self& __x, const _Self& __y) _GLIBCXX_NOEXCEPT { return __x._M_node == __y._M_node; } #if __cpp_impl_three_way_comparison < 201907L friend bool operator!=(const _Self& __x, const _Self& __y) _GLIBCXX_NOEXCEPT { return __x._M_node != __y._M_node; } #endif // The only member points to the %list element. const __detail::_List_node_base* _M_node; }; _GLIBCXX_BEGIN_NAMESPACE_CXX11 /// See bits/stl_deque.h's _Deque_base for an explanation. template class _List_base { protected: typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template rebind<_Tp>::other _Tp_alloc_type; typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Tp_alloc_traits; typedef typename _Tp_alloc_traits::template rebind<_List_node<_Tp> >::other _Node_alloc_type; typedef __gnu_cxx::__alloc_traits<_Node_alloc_type> _Node_alloc_traits; #if !_GLIBCXX_INLINE_VERSION static size_t _S_distance(const __detail::_List_node_base* __first, const __detail::_List_node_base* __last) { size_t __n = 0; while (__first != __last) { __first = __first->_M_next; ++__n; } return __n; } #endif struct _List_impl : public _Node_alloc_type { __detail::_List_node_header _M_node; _List_impl() _GLIBCXX_NOEXCEPT_IF( is_nothrow_default_constructible<_Node_alloc_type>::value) : _Node_alloc_type() { } _List_impl(const _Node_alloc_type& __a) _GLIBCXX_NOEXCEPT : _Node_alloc_type(__a) { } #if __cplusplus >= 201103L _List_impl(_List_impl&&) = default; _List_impl(_Node_alloc_type&& __a, _List_impl&& __x) : _Node_alloc_type(std::move(__a)), _M_node(std::move(__x._M_node)) { } _List_impl(_Node_alloc_type&& __a) noexcept : _Node_alloc_type(std::move(__a)) { } #endif }; _List_impl _M_impl; #if _GLIBCXX_USE_CXX11_ABI size_t _M_get_size() const { return _M_impl._M_node._M_size; } void _M_set_size(size_t __n) { _M_impl._M_node._M_size = __n; } void _M_inc_size(size_t __n) { _M_impl._M_node._M_size += __n; } void _M_dec_size(size_t __n) { _M_impl._M_node._M_size -= __n; } # if !_GLIBCXX_INLINE_VERSION size_t _M_distance(const __detail::_List_node_base* __first, const __detail::_List_node_base* __last) const { return _S_distance(__first, __last); } // return the stored size size_t _M_node_count() const { return _M_get_size(); } # endif #else // dummy implementations used when the size is not stored size_t _M_get_size() const { return 0; } void _M_set_size(size_t) { } void _M_inc_size(size_t) { } void _M_dec_size(size_t) { } # if !_GLIBCXX_INLINE_VERSION size_t _M_distance(const void*, const void*) const { return 0; } // count the number of nodes size_t _M_node_count() const { return _S_distance(_M_impl._M_node._M_next, std::__addressof(_M_impl._M_node)); } # endif #endif typename _Node_alloc_traits::pointer _M_get_node() { return _Node_alloc_traits::allocate(_M_impl, 1); } void _M_put_node(typename _Node_alloc_traits::pointer __p) _GLIBCXX_NOEXCEPT { _Node_alloc_traits::deallocate(_M_impl, __p, 1); } public: typedef _Alloc allocator_type; _Node_alloc_type& _M_get_Node_allocator() _GLIBCXX_NOEXCEPT { return _M_impl; } const _Node_alloc_type& _M_get_Node_allocator() const _GLIBCXX_NOEXCEPT { return _M_impl; } #if __cplusplus >= 201103L _List_base() = default; #else _List_base() { } #endif _List_base(const _Node_alloc_type& __a) _GLIBCXX_NOEXCEPT : _M_impl(__a) { } #if __cplusplus >= 201103L _List_base(_List_base&&) = default; # if !_GLIBCXX_INLINE_VERSION _List_base(_List_base&& __x, _Node_alloc_type&& __a) : _M_impl(std::move(__a)) { if (__x._M_get_Node_allocator() == _M_get_Node_allocator()) _M_move_nodes(std::move(__x)); // else caller must move individual elements. } # endif // Used when allocator is_always_equal. _List_base(_Node_alloc_type&& __a, _List_base&& __x) : _M_impl(std::move(__a), std::move(__x._M_impl)) { } // Used when allocator !is_always_equal. _List_base(_Node_alloc_type&& __a) : _M_impl(std::move(__a)) { } void _M_move_nodes(_List_base&& __x) { _M_impl._M_node._M_move_nodes(std::move(__x._M_impl._M_node)); } #endif // This is what actually destroys the list. ~_List_base() _GLIBCXX_NOEXCEPT { _M_clear(); } void _M_clear() _GLIBCXX_NOEXCEPT; void _M_init() _GLIBCXX_NOEXCEPT { this->_M_impl._M_node._M_init(); } }; /** * @brief A standard container with linear time access to elements, * and fixed time insertion/deletion at any point in the sequence. * * @ingroup sequences * * @tparam _Tp Type of element. * @tparam _Alloc Allocator type, defaults to allocator<_Tp>. * * Meets the requirements of a container, a * reversible container, and a * sequence, including the * optional sequence requirements with the * %exception of @c at and @c operator[]. * * This is a @e doubly @e linked %list. Traversal up and down the * %list requires linear time, but adding and removing elements (or * @e nodes) is done in constant time, regardless of where the * change takes place. Unlike std::vector and std::deque, * random-access iterators are not provided, so subscripting ( @c * [] ) access is not allowed. For algorithms which only need * sequential access, this lack makes no difference. * * Also unlike the other standard containers, std::list provides * specialized algorithms %unique to linked lists, such as * splicing, sorting, and in-place reversal. * * A couple points on memory allocation for list: * * First, we never actually allocate a Tp, we allocate * List_node's and trust [20.1.5]/4 to DTRT. This is to ensure * that after elements from %list are spliced into * %list, destroying the memory of the second %list is a * valid operation, i.e., Alloc1 giveth and Alloc2 taketh away. * * Second, a %list conceptually represented as * @code * A <---> B <---> C <---> D * @endcode * is actually circular; a link exists between A and D. The %list * class holds (as its only data member) a private list::iterator * pointing to @e D, not to @e A! To get to the head of the %list, * we start at the tail and move forward by one. When this member * iterator's next/previous pointers refer to itself, the %list is * %empty. */ template > class list : protected _List_base<_Tp, _Alloc> { #ifdef _GLIBCXX_CONCEPT_CHECKS // concept requirements typedef typename _Alloc::value_type _Alloc_value_type; # if __cplusplus < 201103L __glibcxx_class_requires(_Tp, _SGIAssignableConcept) # endif __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept) #endif #if __cplusplus >= 201103L static_assert(is_same::type, _Tp>::value, "std::list must have a non-const, non-volatile value_type"); # if __cplusplus > 201703L || defined __STRICT_ANSI__ static_assert(is_same::value, "std::list must have the same value_type as its allocator"); # endif #endif typedef _List_base<_Tp, _Alloc> _Base; typedef typename _Base::_Tp_alloc_type _Tp_alloc_type; typedef typename _Base::_Tp_alloc_traits _Tp_alloc_traits; typedef typename _Base::_Node_alloc_type _Node_alloc_type; typedef typename _Base::_Node_alloc_traits _Node_alloc_traits; public: typedef _Tp value_type; typedef typename _Tp_alloc_traits::pointer pointer; typedef typename _Tp_alloc_traits::const_pointer const_pointer; typedef typename _Tp_alloc_traits::reference reference; typedef typename _Tp_alloc_traits::const_reference const_reference; typedef _List_iterator<_Tp> iterator; typedef _List_const_iterator<_Tp> const_iterator; typedef std::reverse_iterator const_reverse_iterator; typedef std::reverse_iterator reverse_iterator; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Alloc allocator_type; protected: // Note that pointers-to-_Node's can be ctor-converted to // iterator types. typedef _List_node<_Tp> _Node; using _Base::_M_impl; using _Base::_M_put_node; using _Base::_M_get_node; using _Base::_M_get_Node_allocator; /** * @param __args An instance of user data. * * Allocates space for a new node and constructs a copy of * @a __args in it. */ #if __cplusplus < 201103L _Node* _M_create_node(const value_type& __x) { _Node* __p = this->_M_get_node(); __try { _Tp_alloc_type __alloc(_M_get_Node_allocator()); __alloc.construct(__p->_M_valptr(), __x); } __catch(...) { _M_put_node(__p); __throw_exception_again; } return __p; } #else template _Node* _M_create_node(_Args&&... __args) { auto __p = this->_M_get_node(); auto& __alloc = _M_get_Node_allocator(); __allocated_ptr<_Node_alloc_type> __guard{__alloc, __p}; _Node_alloc_traits::construct(__alloc, __p->_M_valptr(), std::forward<_Args>(__args)...); __guard = nullptr; return __p; } #endif #if _GLIBCXX_USE_CXX11_ABI static size_t _S_distance(const_iterator __first, const_iterator __last) { return std::distance(__first, __last); } // return the stored size size_t _M_node_count() const { return this->_M_get_size(); } #else // dummy implementations used when the size is not stored static size_t _S_distance(const_iterator, const_iterator) { return 0; } // count the number of nodes size_t _M_node_count() const { return std::distance(begin(), end()); } #endif public: // [23.2.2.1] construct/copy/destroy // (assign() and get_allocator() are also listed in this section) /** * @brief Creates a %list with no elements. */ #if __cplusplus >= 201103L list() = default; #else list() { } #endif /** * @brief Creates a %list with no elements. * @param __a An allocator object. */ explicit list(const allocator_type& __a) _GLIBCXX_NOEXCEPT : _Base(_Node_alloc_type(__a)) { } #if __cplusplus >= 201103L /** * @brief Creates a %list with default constructed elements. * @param __n The number of elements to initially create. * @param __a An allocator object. * * This constructor fills the %list with @a __n default * constructed elements. */ explicit list(size_type __n, const allocator_type& __a = allocator_type()) : _Base(_Node_alloc_type(__a)) { _M_default_initialize(__n); } /** * @brief Creates a %list with copies of an exemplar element. * @param __n The number of elements to initially create. * @param __value An element to copy. * @param __a An allocator object. * * This constructor fills the %list with @a __n copies of @a __value. */ list(size_type __n, const value_type& __value, const allocator_type& __a = allocator_type()) : _Base(_Node_alloc_type(__a)) { _M_fill_initialize(__n, __value); } #else /** * @brief Creates a %list with copies of an exemplar element. * @param __n The number of elements to initially create. * @param __value An element to copy. * @param __a An allocator object. * * This constructor fills the %list with @a __n copies of @a __value. */ explicit list(size_type __n, const value_type& __value = value_type(), const allocator_type& __a = allocator_type()) : _Base(_Node_alloc_type(__a)) { _M_fill_initialize(__n, __value); } #endif /** * @brief %List copy constructor. * @param __x A %list of identical element and allocator types. * * The newly-created %list uses a copy of the allocation object used * by @a __x (unless the allocator traits dictate a different object). */ list(const list& __x) : _Base(_Node_alloc_traits:: _S_select_on_copy(__x._M_get_Node_allocator())) { _M_initialize_dispatch(__x.begin(), __x.end(), __false_type()); } #if __cplusplus >= 201103L /** * @brief %List move constructor. * * The newly-created %list contains the exact contents of the moved * instance. The contents of the moved instance are a valid, but * unspecified %list. */ list(list&&) = default; /** * @brief Builds a %list from an initializer_list * @param __l An initializer_list of value_type. * @param __a An allocator object. * * Create a %list consisting of copies of the elements in the * initializer_list @a __l. This is linear in __l.size(). */ list(initializer_list __l, const allocator_type& __a = allocator_type()) : _Base(_Node_alloc_type(__a)) { _M_initialize_dispatch(__l.begin(), __l.end(), __false_type()); } list(const list& __x, const allocator_type& __a) : _Base(_Node_alloc_type(__a)) { _M_initialize_dispatch(__x.begin(), __x.end(), __false_type()); } private: list(list&& __x, const allocator_type& __a, true_type) noexcept : _Base(_Node_alloc_type(__a), std::move(__x)) { } list(list&& __x, const allocator_type& __a, false_type) : _Base(_Node_alloc_type(__a)) { if (__x._M_get_Node_allocator() == this->_M_get_Node_allocator()) this->_M_move_nodes(std::move(__x)); else insert(begin(), std::__make_move_if_noexcept_iterator(__x.begin()), std::__make_move_if_noexcept_iterator(__x.end())); } public: list(list&& __x, const allocator_type& __a) noexcept(_Node_alloc_traits::_S_always_equal()) : list(std::move(__x), __a, typename _Node_alloc_traits::is_always_equal{}) { } #endif /** * @brief Builds a %list from a range. * @param __first An input iterator. * @param __last An input iterator. * @param __a An allocator object. * * Create a %list consisting of copies of the elements from * [@a __first,@a __last). This is linear in N (where N is * distance(@a __first,@a __last)). */ #if __cplusplus >= 201103L template> list(_InputIterator __first, _InputIterator __last, const allocator_type& __a = allocator_type()) : _Base(_Node_alloc_type(__a)) { _M_initialize_dispatch(__first, __last, __false_type()); } #else template list(_InputIterator __first, _InputIterator __last, const allocator_type& __a = allocator_type()) : _Base(_Node_alloc_type(__a)) { // Check whether it's an integral type. If so, it's not an iterator. typedef typename std::__is_integer<_InputIterator>::__type _Integral; _M_initialize_dispatch(__first, __last, _Integral()); } #endif #if __cplusplus >= 201103L /** * No explicit dtor needed as the _Base dtor takes care of * things. The _Base dtor only erases the elements, and note * that if the elements themselves are pointers, the pointed-to * memory is not touched in any way. Managing the pointer is * the user's responsibility. */ ~list() = default; #endif /** * @brief %List assignment operator. * @param __x A %list of identical element and allocator types. * * All the elements of @a __x are copied. * * Whether the allocator is copied depends on the allocator traits. */ list& operator=(const list& __x); #if __cplusplus >= 201103L /** * @brief %List move assignment operator. * @param __x A %list of identical element and allocator types. * * The contents of @a __x are moved into this %list (without copying). * * Afterwards @a __x is a valid, but unspecified %list * * Whether the allocator is moved depends on the allocator traits. */ list& operator=(list&& __x) noexcept(_Node_alloc_traits::_S_nothrow_move()) { constexpr bool __move_storage = _Node_alloc_traits::_S_propagate_on_move_assign() || _Node_alloc_traits::_S_always_equal(); _M_move_assign(std::move(__x), __bool_constant<__move_storage>()); return *this; } /** * @brief %List initializer list assignment operator. * @param __l An initializer_list of value_type. * * Replace the contents of the %list with copies of the elements * in the initializer_list @a __l. This is linear in l.size(). */ list& operator=(initializer_list __l) { this->assign(__l.begin(), __l.end()); return *this; } #endif /** * @brief Assigns a given value to a %list. * @param __n Number of elements to be assigned. * @param __val Value to be assigned. * * This function fills a %list with @a __n copies of the given * value. Note that the assignment completely changes the %list * and that the resulting %list's size is the same as the number * of elements assigned. */ void assign(size_type __n, const value_type& __val) { _M_fill_assign(__n, __val); } /** * @brief Assigns a range to a %list. * @param __first An input iterator. * @param __last An input iterator. * * This function fills a %list with copies of the elements in the * range [@a __first,@a __last). * * Note that the assignment completely changes the %list and * that the resulting %list's size is the same as the number of * elements assigned. */ #if __cplusplus >= 201103L template> void assign(_InputIterator __first, _InputIterator __last) { _M_assign_dispatch(__first, __last, __false_type()); } #else template void assign(_InputIterator __first, _InputIterator __last) { // Check whether it's an integral type. If so, it's not an iterator. typedef typename std::__is_integer<_InputIterator>::__type _Integral; _M_assign_dispatch(__first, __last, _Integral()); } #endif #if __cplusplus >= 201103L /** * @brief Assigns an initializer_list to a %list. * @param __l An initializer_list of value_type. * * Replace the contents of the %list with copies of the elements * in the initializer_list @a __l. This is linear in __l.size(). */ void assign(initializer_list __l) { this->_M_assign_dispatch(__l.begin(), __l.end(), __false_type()); } #endif /// Get a copy of the memory allocation object. allocator_type get_allocator() const _GLIBCXX_NOEXCEPT { return allocator_type(_Base::_M_get_Node_allocator()); } // iterators /** * Returns a read/write iterator that points to the first element in the * %list. Iteration is done in ordinary element order. */ iterator begin() _GLIBCXX_NOEXCEPT { return iterator(this->_M_impl._M_node._M_next); } /** * Returns a read-only (constant) iterator that points to the * first element in the %list. Iteration is done in ordinary * element order. */ const_iterator begin() const _GLIBCXX_NOEXCEPT { return const_iterator(this->_M_impl._M_node._M_next); } /** * Returns a read/write iterator that points one past the last * element in the %list. Iteration is done in ordinary element * order. */ iterator end() _GLIBCXX_NOEXCEPT { return iterator(&this->_M_impl._M_node); } /** * Returns a read-only (constant) iterator that points one past * the last element in the %list. Iteration is done in ordinary * element order. */ const_iterator end() const _GLIBCXX_NOEXCEPT { return const_iterator(&this->_M_impl._M_node); } /** * Returns a read/write reverse iterator that points to the last * element in the %list. Iteration is done in reverse element * order. */ reverse_iterator rbegin() _GLIBCXX_NOEXCEPT { return reverse_iterator(end()); } /** * Returns a read-only (constant) reverse iterator that points to * the last element in the %list. Iteration is done in reverse * element order. */ const_reverse_iterator rbegin() const _GLIBCXX_NOEXCEPT { return const_reverse_iterator(end()); } /** * Returns a read/write reverse iterator that points to one * before the first element in the %list. Iteration is done in * reverse element order. */ reverse_iterator rend() _GLIBCXX_NOEXCEPT { return reverse_iterator(begin()); } /** * Returns a read-only (constant) reverse iterator that points to one * before the first element in the %list. Iteration is done in reverse * element order. */ const_reverse_iterator rend() const _GLIBCXX_NOEXCEPT { return const_reverse_iterator(begin()); } #if __cplusplus >= 201103L /** * Returns a read-only (constant) iterator that points to the * first element in the %list. Iteration is done in ordinary * element order. */ const_iterator cbegin() const noexcept { return const_iterator(this->_M_impl._M_node._M_next); } /** * Returns a read-only (constant) iterator that points one past * the last element in the %list. Iteration is done in ordinary * element order. */ const_iterator cend() const noexcept { return const_iterator(&this->_M_impl._M_node); } /** * Returns a read-only (constant) reverse iterator that points to * the last element in the %list. Iteration is done in reverse * element order. */ const_reverse_iterator crbegin() const noexcept { return const_reverse_iterator(end()); } /** * Returns a read-only (constant) reverse iterator that points to one * before the first element in the %list. Iteration is done in reverse * element order. */ const_reverse_iterator crend() const noexcept { return const_reverse_iterator(begin()); } #endif // [23.2.2.2] capacity /** * Returns true if the %list is empty. (Thus begin() would equal * end().) */ _GLIBCXX_NODISCARD bool empty() const _GLIBCXX_NOEXCEPT { return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; } /** Returns the number of elements in the %list. */ size_type size() const _GLIBCXX_NOEXCEPT { return _M_node_count(); } /** Returns the size() of the largest possible %list. */ size_type max_size() const _GLIBCXX_NOEXCEPT { return _Node_alloc_traits::max_size(_M_get_Node_allocator()); } #if __cplusplus >= 201103L /** * @brief Resizes the %list to the specified number of elements. * @param __new_size Number of elements the %list should contain. * * This function will %resize the %list to the specified number * of elements. If the number is smaller than the %list's * current size the %list is truncated, otherwise default * constructed elements are appended. */ void resize(size_type __new_size); /** * @brief Resizes the %list to the specified number of elements. * @param __new_size Number of elements the %list should contain. * @param __x Data with which new elements should be populated. * * This function will %resize the %list to the specified number * of elements. If the number is smaller than the %list's * current size the %list is truncated, otherwise the %list is * extended and new elements are populated with given data. */ void resize(size_type __new_size, const value_type& __x); #else /** * @brief Resizes the %list to the specified number of elements. * @param __new_size Number of elements the %list should contain. * @param __x Data with which new elements should be populated. * * This function will %resize the %list to the specified number * of elements. If the number is smaller than the %list's * current size the %list is truncated, otherwise the %list is * extended and new elements are populated with given data. */ void resize(size_type __new_size, value_type __x = value_type()); #endif // element access /** * Returns a read/write reference to the data at the first * element of the %list. */ reference front() _GLIBCXX_NOEXCEPT { return *begin(); } /** * Returns a read-only (constant) reference to the data at the first * element of the %list. */ const_reference front() const _GLIBCXX_NOEXCEPT { return *begin(); } /** * Returns a read/write reference to the data at the last element * of the %list. */ reference back() _GLIBCXX_NOEXCEPT { iterator __tmp = end(); --__tmp; return *__tmp; } /** * Returns a read-only (constant) reference to the data at the last * element of the %list. */ const_reference back() const _GLIBCXX_NOEXCEPT { const_iterator __tmp = end(); --__tmp; return *__tmp; } // [23.2.2.3] modifiers /** * @brief Add data to the front of the %list. * @param __x Data to be added. * * This is a typical stack operation. The function creates an * element at the front of the %list and assigns the given data * to it. Due to the nature of a %list this operation can be * done in constant time, and does not invalidate iterators and * references. */ void push_front(const value_type& __x) { this->_M_insert(begin(), __x); } #if __cplusplus >= 201103L void push_front(value_type&& __x) { this->_M_insert(begin(), std::move(__x)); } template #if __cplusplus > 201402L reference #else void #endif emplace_front(_Args&&... __args) { this->_M_insert(begin(), std::forward<_Args>(__args)...); #if __cplusplus > 201402L return front(); #endif } #endif /** * @brief Removes first element. * * This is a typical stack operation. It shrinks the %list by * one. Due to the nature of a %list this operation can be done * in constant time, and only invalidates iterators/references to * the element being removed. * * Note that no data is returned, and if the first element's data * is needed, it should be retrieved before pop_front() is * called. */ void pop_front() _GLIBCXX_NOEXCEPT { this->_M_erase(begin()); } /** * @brief Add data to the end of the %list. * @param __x Data to be added. * * This is a typical stack operation. The function creates an * element at the end of the %list and assigns the given data to * it. Due to the nature of a %list this operation can be done * in constant time, and does not invalidate iterators and * references. */ void push_back(const value_type& __x) { this->_M_insert(end(), __x); } #if __cplusplus >= 201103L void push_back(value_type&& __x) { this->_M_insert(end(), std::move(__x)); } template #if __cplusplus > 201402L reference #else void #endif emplace_back(_Args&&... __args) { this->_M_insert(end(), std::forward<_Args>(__args)...); #if __cplusplus > 201402L return back(); #endif } #endif /** * @brief Removes last element. * * This is a typical stack operation. It shrinks the %list by * one. Due to the nature of a %list this operation can be done * in constant time, and only invalidates iterators/references to * the element being removed. * * Note that no data is returned, and if the last element's data * is needed, it should be retrieved before pop_back() is called. */ void pop_back() _GLIBCXX_NOEXCEPT { this->_M_erase(iterator(this->_M_impl._M_node._M_prev)); } #if __cplusplus >= 201103L /** * @brief Constructs object in %list before specified iterator. * @param __position A const_iterator into the %list. * @param __args Arguments. * @return An iterator that points to the inserted data. * * This function will insert an object of type T constructed * with T(std::forward(args)...) before the specified * location. Due to the nature of a %list this operation can * be done in constant time, and does not invalidate iterators * and references. */ template iterator emplace(const_iterator __position, _Args&&... __args); /** * @brief Inserts given value into %list before specified iterator. * @param __position A const_iterator into the %list. * @param __x Data to be inserted. * @return An iterator that points to the inserted data. * * This function will insert a copy of the given value before * the specified location. Due to the nature of a %list this * operation can be done in constant time, and does not * invalidate iterators and references. */ iterator insert(const_iterator __position, const value_type& __x); #else /** * @brief Inserts given value into %list before specified iterator. * @param __position An iterator into the %list. * @param __x Data to be inserted. * @return An iterator that points to the inserted data. * * This function will insert a copy of the given value before * the specified location. Due to the nature of a %list this * operation can be done in constant time, and does not * invalidate iterators and references. */ iterator insert(iterator __position, const value_type& __x); #endif #if __cplusplus >= 201103L /** * @brief Inserts given rvalue into %list before specified iterator. * @param __position A const_iterator into the %list. * @param __x Data to be inserted. * @return An iterator that points to the inserted data. * * This function will insert a copy of the given rvalue before * the specified location. Due to the nature of a %list this * operation can be done in constant time, and does not * invalidate iterators and references. */ iterator insert(const_iterator __position, value_type&& __x) { return emplace(__position, std::move(__x)); } /** * @brief Inserts the contents of an initializer_list into %list * before specified const_iterator. * @param __p A const_iterator into the %list. * @param __l An initializer_list of value_type. * @return An iterator pointing to the first element inserted * (or __position). * * This function will insert copies of the data in the * initializer_list @a l into the %list before the location * specified by @a p. * * This operation is linear in the number of elements inserted and * does not invalidate iterators and references. */ iterator insert(const_iterator __p, initializer_list __l) { return this->insert(__p, __l.begin(), __l.end()); } #endif #if __cplusplus >= 201103L /** * @brief Inserts a number of copies of given data into the %list. * @param __position A const_iterator into the %list. * @param __n Number of elements to be inserted. * @param __x Data to be inserted. * @return An iterator pointing to the first element inserted * (or __position). * * This function will insert a specified number of copies of the * given data before the location specified by @a position. * * This operation is linear in the number of elements inserted and * does not invalidate iterators and references. */ iterator insert(const_iterator __position, size_type __n, const value_type& __x); #else /** * @brief Inserts a number of copies of given data into the %list. * @param __position An iterator into the %list. * @param __n Number of elements to be inserted. * @param __x Data to be inserted. * * This function will insert a specified number of copies of the * given data before the location specified by @a position. * * This operation is linear in the number of elements inserted and * does not invalidate iterators and references. */ void insert(iterator __position, size_type __n, const value_type& __x) { list __tmp(__n, __x, get_allocator()); splice(__position, __tmp); } #endif #if __cplusplus >= 201103L /** * @brief Inserts a range into the %list. * @param __position A const_iterator into the %list. * @param __first An input iterator. * @param __last An input iterator. * @return An iterator pointing to the first element inserted * (or __position). * * This function will insert copies of the data in the range [@a * first,@a last) into the %list before the location specified by * @a position. * * This operation is linear in the number of elements inserted and * does not invalidate iterators and references. */ template> iterator insert(const_iterator __position, _InputIterator __first, _InputIterator __last); #else /** * @brief Inserts a range into the %list. * @param __position An iterator into the %list. * @param __first An input iterator. * @param __last An input iterator. * * This function will insert copies of the data in the range [@a * first,@a last) into the %list before the location specified by * @a position. * * This operation is linear in the number of elements inserted and * does not invalidate iterators and references. */ template void insert(iterator __position, _InputIterator __first, _InputIterator __last) { list __tmp(__first, __last, get_allocator()); splice(__position, __tmp); } #endif /** * @brief Remove element at given position. * @param __position Iterator pointing to element to be erased. * @return An iterator pointing to the next element (or end()). * * This function will erase the element at the given position and thus * shorten the %list by one. * * Due to the nature of a %list this operation can be done in * constant time, and only invalidates iterators/references to * the element being removed. The user is also cautioned that * this function only erases the element, and that if the element * is itself a pointer, the pointed-to memory is not touched in * any way. Managing the pointer is the user's responsibility. */ iterator #if __cplusplus >= 201103L erase(const_iterator __position) noexcept; #else erase(iterator __position); #endif /** * @brief Remove a range of elements. * @param __first Iterator pointing to the first element to be erased. * @param __last Iterator pointing to one past the last element to be * erased. * @return An iterator pointing to the element pointed to by @a last * prior to erasing (or end()). * * This function will erase the elements in the range @a * [first,last) and shorten the %list accordingly. * * This operation is linear time in the size of the range and only * invalidates iterators/references to the element being removed. * The user is also cautioned that this function only erases the * elements, and that if the elements themselves are pointers, the * pointed-to memory is not touched in any way. Managing the pointer * is the user's responsibility. */ iterator #if __cplusplus >= 201103L erase(const_iterator __first, const_iterator __last) noexcept #else erase(iterator __first, iterator __last) #endif { while (__first != __last) __first = erase(__first); return __last._M_const_cast(); } /** * @brief Swaps data with another %list. * @param __x A %list of the same element and allocator types. * * This exchanges the elements between two lists in constant * time. Note that the global std::swap() function is * specialized such that std::swap(l1,l2) will feed to this * function. * * Whether the allocators are swapped depends on the allocator traits. */ void swap(list& __x) _GLIBCXX_NOEXCEPT { __detail::_List_node_base::swap(this->_M_impl._M_node, __x._M_impl._M_node); size_t __xsize = __x._M_get_size(); __x._M_set_size(this->_M_get_size()); this->_M_set_size(__xsize); _Node_alloc_traits::_S_on_swap(this->_M_get_Node_allocator(), __x._M_get_Node_allocator()); } /** * Erases all the elements. Note that this function only erases * the elements, and that if the elements themselves are * pointers, the pointed-to memory is not touched in any way. * Managing the pointer is the user's responsibility. */ void clear() _GLIBCXX_NOEXCEPT { _Base::_M_clear(); _Base::_M_init(); } // [23.2.2.4] list operations /** * @brief Insert contents of another %list. * @param __position Iterator referencing the element to insert before. * @param __x Source list. * * The elements of @a __x are inserted in constant time in front of * the element referenced by @a __position. @a __x becomes an empty * list. * * Requires this != @a __x. */ void #if __cplusplus >= 201103L splice(const_iterator __position, list&& __x) noexcept #else splice(iterator __position, list& __x) #endif { if (!__x.empty()) { _M_check_equal_allocators(__x); this->_M_transfer(__position._M_const_cast(), __x.begin(), __x.end()); this->_M_inc_size(__x._M_get_size()); __x._M_set_size(0); } } #if __cplusplus >= 201103L void splice(const_iterator __position, list& __x) noexcept { splice(__position, std::move(__x)); } #endif #if __cplusplus >= 201103L /** * @brief Insert element from another %list. * @param __position Const_iterator referencing the element to * insert before. * @param __x Source list. * @param __i Const_iterator referencing the element to move. * * Removes the element in list @a __x referenced by @a __i and * inserts it into the current list before @a __position. */ void splice(const_iterator __position, list&& __x, const_iterator __i) noexcept #else /** * @brief Insert element from another %list. * @param __position Iterator referencing the element to insert before. * @param __x Source list. * @param __i Iterator referencing the element to move. * * Removes the element in list @a __x referenced by @a __i and * inserts it into the current list before @a __position. */ void splice(iterator __position, list& __x, iterator __i) #endif { iterator __j = __i._M_const_cast(); ++__j; if (__position == __i || __position == __j) return; if (this != std::__addressof(__x)) _M_check_equal_allocators(__x); this->_M_transfer(__position._M_const_cast(), __i._M_const_cast(), __j); this->_M_inc_size(1); __x._M_dec_size(1); } #if __cplusplus >= 201103L /** * @brief Insert element from another %list. * @param __position Const_iterator referencing the element to * insert before. * @param __x Source list. * @param __i Const_iterator referencing the element to move. * * Removes the element in list @a __x referenced by @a __i and * inserts it into the current list before @a __position. */ void splice(const_iterator __position, list& __x, const_iterator __i) noexcept { splice(__position, std::move(__x), __i); } #endif #if __cplusplus >= 201103L /** * @brief Insert range from another %list. * @param __position Const_iterator referencing the element to * insert before. * @param __x Source list. * @param __first Const_iterator referencing the start of range in x. * @param __last Const_iterator referencing the end of range in x. * * Removes elements in the range [__first,__last) and inserts them * before @a __position in constant time. * * Undefined if @a __position is in [__first,__last). */ void splice(const_iterator __position, list&& __x, const_iterator __first, const_iterator __last) noexcept #else /** * @brief Insert range from another %list. * @param __position Iterator referencing the element to insert before. * @param __x Source list. * @param __first Iterator referencing the start of range in x. * @param __last Iterator referencing the end of range in x. * * Removes elements in the range [__first,__last) and inserts them * before @a __position in constant time. * * Undefined if @a __position is in [__first,__last). */ void splice(iterator __position, list& __x, iterator __first, iterator __last) #endif { if (__first != __last) { if (this != std::__addressof(__x)) _M_check_equal_allocators(__x); size_t __n = _S_distance(__first, __last); this->_M_inc_size(__n); __x._M_dec_size(__n); this->_M_transfer(__position._M_const_cast(), __first._M_const_cast(), __last._M_const_cast()); } } #if __cplusplus >= 201103L /** * @brief Insert range from another %list. * @param __position Const_iterator referencing the element to * insert before. * @param __x Source list. * @param __first Const_iterator referencing the start of range in x. * @param __last Const_iterator referencing the end of range in x. * * Removes elements in the range [__first,__last) and inserts them * before @a __position in constant time. * * Undefined if @a __position is in [__first,__last). */ void splice(const_iterator __position, list& __x, const_iterator __first, const_iterator __last) noexcept { splice(__position, std::move(__x), __first, __last); } #endif private: #if __cplusplus > 201703L # define __cpp_lib_list_remove_return_type 201806L typedef size_type __remove_return_type; # define _GLIBCXX_LIST_REMOVE_RETURN_TYPE_TAG \ __attribute__((__abi_tag__("__cxx20"))) #else typedef void __remove_return_type; # define _GLIBCXX_LIST_REMOVE_RETURN_TYPE_TAG #endif public: /** * @brief Remove all elements equal to value. * @param __value The value to remove. * * Removes every element in the list equal to @a value. * Remaining elements stay in list order. Note that this * function only erases the elements, and that if the elements * themselves are pointers, the pointed-to memory is not * touched in any way. Managing the pointer is the user's * responsibility. */ _GLIBCXX_LIST_REMOVE_RETURN_TYPE_TAG __remove_return_type remove(const _Tp& __value); /** * @brief Remove all elements satisfying a predicate. * @tparam _Predicate Unary predicate function or object. * * Removes every element in the list for which the predicate * returns true. Remaining elements stay in list order. Note * that this function only erases the elements, and that if the * elements themselves are pointers, the pointed-to memory is * not touched in any way. Managing the pointer is the user's * responsibility. */ template __remove_return_type remove_if(_Predicate); /** * @brief Remove consecutive duplicate elements. * * For each consecutive set of elements with the same value, * remove all but the first one. Remaining elements stay in * list order. Note that this function only erases the * elements, and that if the elements themselves are pointers, * the pointed-to memory is not touched in any way. Managing * the pointer is the user's responsibility. */ _GLIBCXX_LIST_REMOVE_RETURN_TYPE_TAG __remove_return_type unique(); /** * @brief Remove consecutive elements satisfying a predicate. * @tparam _BinaryPredicate Binary predicate function or object. * * For each consecutive set of elements [first,last) that * satisfy predicate(first,i) where i is an iterator in * [first,last), remove all but the first one. Remaining * elements stay in list order. Note that this function only * erases the elements, and that if the elements themselves are * pointers, the pointed-to memory is not touched in any way. * Managing the pointer is the user's responsibility. */ template __remove_return_type unique(_BinaryPredicate); #undef _GLIBCXX_LIST_REMOVE_RETURN_TYPE_TAG /** * @brief Merge sorted lists. * @param __x Sorted list to merge. * * Assumes that both @a __x and this list are sorted according to * operator<(). Merges elements of @a __x into this list in * sorted order, leaving @a __x empty when complete. Elements in * this list precede elements in @a __x that are equal. */ #if __cplusplus >= 201103L void merge(list&& __x); void merge(list& __x) { merge(std::move(__x)); } #else void merge(list& __x); #endif /** * @brief Merge sorted lists according to comparison function. * @tparam _StrictWeakOrdering Comparison function defining * sort order. * @param __x Sorted list to merge. * @param __comp Comparison functor. * * Assumes that both @a __x and this list are sorted according to * StrictWeakOrdering. Merges elements of @a __x into this list * in sorted order, leaving @a __x empty when complete. Elements * in this list precede elements in @a __x that are equivalent * according to StrictWeakOrdering(). */ #if __cplusplus >= 201103L template void merge(list&& __x, _StrictWeakOrdering __comp); template void merge(list& __x, _StrictWeakOrdering __comp) { merge(std::move(__x), __comp); } #else template void merge(list& __x, _StrictWeakOrdering __comp); #endif /** * @brief Reverse the elements in list. * * Reverse the order of elements in the list in linear time. */ void reverse() _GLIBCXX_NOEXCEPT { this->_M_impl._M_node._M_reverse(); } /** * @brief Sort the elements. * * Sorts the elements of this list in NlogN time. Equivalent * elements remain in list order. */ void sort(); /** * @brief Sort the elements according to comparison function. * * Sorts the elements of this list in NlogN time. Equivalent * elements remain in list order. */ template void sort(_StrictWeakOrdering); protected: // Internal constructor functions follow. // Called by the range constructor to implement [23.1.1]/9 // _GLIBCXX_RESOLVE_LIB_DEFECTS // 438. Ambiguity in the "do the right thing" clause template void _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) { _M_fill_initialize(static_cast(__n), __x); } // Called by the range constructor to implement [23.1.1]/9 template void _M_initialize_dispatch(_InputIterator __first, _InputIterator __last, __false_type) { for (; __first != __last; ++__first) #if __cplusplus >= 201103L emplace_back(*__first); #else push_back(*__first); #endif } // Called by list(n,v,a), and the range constructor when it turns out // to be the same thing. void _M_fill_initialize(size_type __n, const value_type& __x) { for (; __n; --__n) push_back(__x); } #if __cplusplus >= 201103L // Called by list(n). void _M_default_initialize(size_type __n) { for (; __n; --__n) emplace_back(); } // Called by resize(sz). void _M_default_append(size_type __n); #endif // Internal assign functions follow. // Called by the range assign to implement [23.1.1]/9 // _GLIBCXX_RESOLVE_LIB_DEFECTS // 438. Ambiguity in the "do the right thing" clause template void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) { _M_fill_assign(__n, __val); } // Called by the range assign to implement [23.1.1]/9 template void _M_assign_dispatch(_InputIterator __first, _InputIterator __last, __false_type); // Called by assign(n,t), and the range assign when it turns out // to be the same thing. void _M_fill_assign(size_type __n, const value_type& __val); // Moves the elements from [first,last) before position. void _M_transfer(iterator __position, iterator __first, iterator __last) { __position._M_node->_M_transfer(__first._M_node, __last._M_node); } // Inserts new element at position given and with value given. #if __cplusplus < 201103L void _M_insert(iterator __position, const value_type& __x) { _Node* __tmp = _M_create_node(__x); __tmp->_M_hook(__position._M_node); this->_M_inc_size(1); } #else template void _M_insert(iterator __position, _Args&&... __args) { _Node* __tmp = _M_create_node(std::forward<_Args>(__args)...); __tmp->_M_hook(__position._M_node); this->_M_inc_size(1); } #endif // Erases element at position given. void _M_erase(iterator __position) _GLIBCXX_NOEXCEPT { this->_M_dec_size(1); __position._M_node->_M_unhook(); _Node* __n = static_cast<_Node*>(__position._M_node); #if __cplusplus >= 201103L _Node_alloc_traits::destroy(_M_get_Node_allocator(), __n->_M_valptr()); #else _Tp_alloc_type(_M_get_Node_allocator()).destroy(__n->_M_valptr()); #endif _M_put_node(__n); } // To implement the splice (and merge) bits of N1599. void _M_check_equal_allocators(list& __x) _GLIBCXX_NOEXCEPT { if (std::__alloc_neq:: _S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator())) __builtin_abort(); } // Used to implement resize. const_iterator _M_resize_pos(size_type& __new_size) const; #if __cplusplus >= 201103L void _M_move_assign(list&& __x, true_type) noexcept { this->clear(); this->_M_move_nodes(std::move(__x)); std::__alloc_on_move(this->_M_get_Node_allocator(), __x._M_get_Node_allocator()); } void _M_move_assign(list&& __x, false_type) { if (__x._M_get_Node_allocator() == this->_M_get_Node_allocator()) _M_move_assign(std::move(__x), true_type{}); else // The rvalue's allocator cannot be moved, or is not equal, // so we need to individually move each element. _M_assign_dispatch(std::make_move_iterator(__x.begin()), std::make_move_iterator(__x.end()), __false_type{}); } #endif }; #if __cpp_deduction_guides >= 201606 template::value_type, typename _Allocator = allocator<_ValT>, typename = _RequireInputIter<_InputIterator>, typename = _RequireAllocator<_Allocator>> list(_InputIterator, _InputIterator, _Allocator = _Allocator()) -> list<_ValT, _Allocator>; #endif _GLIBCXX_END_NAMESPACE_CXX11 /** * @brief List equality comparison. * @param __x A %list. * @param __y A %list of the same type as @a __x. * @return True iff the size and elements of the lists are equal. * * This is an equivalence relation. It is linear in the size of * the lists. Lists are considered equivalent if their sizes are * equal, and if corresponding elements compare equal. */ template inline bool operator==(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) { #if _GLIBCXX_USE_CXX11_ABI if (__x.size() != __y.size()) return false; #endif typedef typename list<_Tp, _Alloc>::const_iterator const_iterator; const_iterator __end1 = __x.end(); const_iterator __end2 = __y.end(); const_iterator __i1 = __x.begin(); const_iterator __i2 = __y.begin(); while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2) { ++__i1; ++__i2; } return __i1 == __end1 && __i2 == __end2; } #if __cpp_lib_three_way_comparison /** * @brief List ordering relation. * @param __x A `list`. * @param __y A `list` of the same type as `__x`. * @return A value indicating whether `__x` is less than, equal to, * greater than, or incomparable with `__y`. * * See `std::lexicographical_compare_three_way()` for how the determination * is made. This operator is used to synthesize relational operators like * `<` and `>=` etc. */ template inline __detail::__synth3way_t<_Tp> operator<=>(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) { return std::lexicographical_compare_three_way(__x.begin(), __x.end(), __y.begin(), __y.end(), __detail::__synth3way); } #else /** * @brief List ordering relation. * @param __x A %list. * @param __y A %list of the same type as @a __x. * @return True iff @a __x is lexicographically less than @a __y. * * This is a total ordering relation. It is linear in the size of the * lists. The elements must be comparable with @c <. * * See std::lexicographical_compare() for how the determination is made. */ template inline bool operator<(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) { return std::lexicographical_compare(__x.begin(), __x.end(), __y.begin(), __y.end()); } /// Based on operator== template inline bool operator!=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) { return !(__x == __y); } /// Based on operator< template inline bool operator>(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) { return __y < __x; } /// Based on operator< template inline bool operator<=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) { return !(__y < __x); } /// Based on operator< template inline bool operator>=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y) { return !(__x < __y); } #endif // three-way comparison /// See std::list::swap(). template inline void swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y) _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y))) { __x.swap(__y); } _GLIBCXX_END_NAMESPACE_CONTAINER #if _GLIBCXX_USE_CXX11_ABI // Detect when distance is used to compute the size of the whole list. template inline ptrdiff_t __distance(_GLIBCXX_STD_C::_List_iterator<_Tp> __first, _GLIBCXX_STD_C::_List_iterator<_Tp> __last, input_iterator_tag __tag) { typedef _GLIBCXX_STD_C::_List_const_iterator<_Tp> _CIter; return std::__distance(_CIter(__first), _CIter(__last), __tag); } template inline ptrdiff_t __distance(_GLIBCXX_STD_C::_List_const_iterator<_Tp> __first, _GLIBCXX_STD_C::_List_const_iterator<_Tp> __last, input_iterator_tag) { typedef __detail::_List_node_header _Sentinel; _GLIBCXX_STD_C::_List_const_iterator<_Tp> __beyond = __last; ++__beyond; const bool __whole = __first == __beyond; if (__builtin_constant_p (__whole) && __whole) return static_cast(__last._M_node)->_M_size; ptrdiff_t __n = 0; while (__first != __last) { ++__first; ++__n; } return __n; } #endif _GLIBCXX_END_NAMESPACE_VERSION } // namespace std #endif /* _STL_LIST_H */